МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тюменский индустриальный университет» Институт промышленных технологий и инжиниринга

УТВЕРЖДАЮ Директор ИПТИ А.Н. Халин 2024 г.

ПРОГРАММА кандидатского экзамена

Специальная дисциплина

Материаловедение (технические науки)

Научная специальность

2.6.17. Материаловедение

Программа рассмотрена на заседании кафедры материаловедения и технологии конструкционных материалов

lishor

Протокол № 3 от «28» 11 2024 г.

Заведующий кафедрой ______ В.И. Плеханов

Программу разработал:

Ковенский И.М., профессор, д-р техн. наук, профессор _

1. Цель экзамена

Цель кандидатского экзамена — установить глубину профессиональных знаний аспиранта/соискателя ученой степени кандидата наук (далее — соискатель), уровень подготовленности к самостоятельной научно-исследовательской работе.

Экзаменуемый должен продемонстрировать/показать: высокий уровень освоения профессиональных знаний, умений и практических навыков по основным разделам программы в части общих концепций и методологических вопросов научной специальности, теории и практики изученного материала, а также умения применять свои знания для решения исследовательских и прикладных задач.

2. Содержание программы

Раздел 1. «Теоретические основы материаловедения»

1.1. Строение и свойства материалов

Строение атома и периодическая система элементов Д.И. Менделеева. Электронная структура. Типы межатомных связей в кристаллах.

Кристаллическое строение твердых тел. Типы кристаллических решеток металлов и их характеристика. Реальное строение металлических и неметаллических кристаллов. Анизотропия свойств кристаллов. Дефекты кристаллического строения: точечные, линейные, поверхностные и объемные. Дислокационная структура и прочность металлов.

Фуллерены и нанотрубки. Наноструктурное строение веществ. Процессы самоорганизации дислокационной и фрактальной структур материалов с позиций синергетики.

1.2. Основы электронной теории твердых тел

Зонная теория твердых тел. Связь физических свойств с поведением электронов. Теплопроводность, электропроводность и электронная теплоемкость металлов. Термоэлектронная эмиссия. Сверхпроводимость. Электронное строение полупроводников и диэлектриков.

Магнитные свойства материалов. Диамагнетизм, парамагнетизм, ферромагнетизм.

1.3. Формирование структуры металла при кристаллизации

Агрегатные состояния веществ. Энергетические условия и термодинамика процесса кристаллизации. Самопроизвольная и несамопроизвольная кристаллизация. Форма кристаллических образований. Строение слитка. Полиморфизм. Магнитные превращения. Аморфное состояние металлов. Аморфные сплавы.

1.4. Строение пластически деформированных металлов

Структурные изменения в металлах в условиях холодной и горячей пластической деформации. Температура рекристаллизации. Строение металлов после возврата и рекристаллизации. Механизм и стадии процесса рекристаллизации. Условия реализации направленной кристаллизации.

1.5. Типы сплавов. Основы теории сплавов

Условия термодинамического равновесия. Определение системы, фазы, структуры. Смеси, химические соединения, твердые растворы, промежуточные фазы. Правило фаз.

Основные типы диаграмм состояния двойных сплавов и методы их построения. Эвтектическое и перитектическое превращения. Виды ликвации. Фазовые и структурные превращения в твердом состоянии. Эвтектоидное превращение. Связь между свойствами сплавов и типом диаграммы состояния.

Диаграммы состояния железо-цементит и железо-графит. Влияние легирующих компонентов на критические точки железа и стали, свойства феррита и аустенита.

Фазовые превращения в стали при нагреве и охлаждении. Процесс нагреве. Механизм превращений образования аустенита при аустенита. Изотермические термокинетические переохлажденного И Влияние состава стали на процесс распада диаграммы. аустенита. Критическая скорость охлаждения при закалке.

Раздел 2 «Методы исследования структуры и физических свойств материалов»

2.1. Методы исследования структуры и фазового состава

Металлографические и фрактографические методы исследования, оптическая и электронная, в том числе дифракционная микроскопия (просвечивающий и сканирующий электронные микроскопы). Рентгеновские методы исследования: структурный и спектральный методы анализа.

2.2. Методы исследования физических свойств и фазовых превращений в металлах и сплавах

Магнитный и электрический методы анализа фазовых и структурных превращений. Метод термо- Э.Д.С. Метод ядерного магнитного резонанса.

Метод ядерного гаммарезонанса.

2.3. Физические методы неразрушающего контроля дефектов материалов

Ультразвуковая дефектоскопия. Рентгеновская и гамма-дефектоскопия. Метод вихревых токов. Магнитная и тепловая дефектоскопия.

Раздел 3 «Механические свойства материалов и методы их определения»

- 3.1. Схемы напряженного и деформированного состояний материалов Плоское и объемное напряженные состояния. Плоская деформация. Концентрация напряжений. Остаточные напряжения, определение, классификация.
 - 3.2. Упругие свойства материалов

Модуль упругости и его зависимость от кристаллической структуры материала. Упругое последствие, упругий гистерезис, внутреннее трение.

3.3. Пластическая деформация и деформационное упрочнение

Процессы скольжения и двойникования. Краевые, винтовые и смешанные дислокации. Вектор Бюргерса. Скольжение и переползание дислокаций. Взаимодействие дислокаций между собой и с примесями. Особенности деформации монокристаллов и поликристаллов. Влияние границ зерен на пластическую деформацию поликристаллов. Дисклинации. Сверхпластичность. Влияние пластической деформации на структуру и свойства материалов. Механизм упрочнения. Деформационное упрочнение. Упрочнение твердых растворов при взаимодействии дислокаций с примесями внедрения. Дисперсионное твердение.

3.4. Разрушение материалов

Виды разрушения материалов. Механизмы зарождения трещин. Силовые, деформационные и энергетические критерии локального разрушения. Трещиностойкость. Подходы механики разрушения к выбору конструкционных материалов, расчету размера допустимого дефекта и прогнозированию долговечности. Фрактография как метод количественной оценки механизма разрушения.

3.5. Механические свойства материалов и методы их определения

Классификация методов механических испытаний. Значение механических характеристик в материаловедении.

Механические свойства, определяемые при статическом нагружении. Испытания на растяжение, сжатие, изгиб, кручение, трещиностойкость. Влияние легирования, структуры концентраторов напряжений и масштабного фактора на характеристики механических свойств.

Механические свойства, определяемые при динамическом нагружении. Влияние скорости деформирования на характеристики прочности и пластичности. Динамические испытания на изгиб образцов. Ударная вязкость. Методы определения ударной вязкости и ее составляющих.

Механические свойства, определяемые при циклическом нагружении. Усталость, диаграммы усталости, предел выносливости. Малоцикловая и многоцикловая усталость. Природа усталостного разрушения. Влияние различных факторов на сопротивление усталости.

Испытания на твердость вдавливанием и царапанием. Триботехнические испытания.

3.6. Хладостойкость. Синеломкость. Жаростойкость и жаропрочность

Поведение материалов под нагрузкой при охлаждении от комнатных температур до криогенных. Хладостойкость и критическая температура хрупкости, методы определения.

Поведение материалов под нагрузкой при нагреве от комнатных температур до температуры рекристаллизации и выше. Синеломкость и тепловая хрупкость. Жаростойкость и жаропрочность. Ползучесть, диаграммы ползучести, предел ползучести. Теория рекристаллизационной ползучести. Длительная прочность, диаграммы длительной прочности, предел длительной прочности. Механизм хрупкого разрушения при

ползучести. Релаксация напряжений, диаграммы релаксации, релаксационная стойкость. Влияние легирования и структуры на характеристики жаропрочности материалов.

3.7. Коррозия металлов и сплавов

Адсорбционные процессы при деформации и разрушении металлов. Эффект Ребиндера. Влияние поверхностноактивных сред на прочность металлов и сплавов.

Закономерности окисления металлов. Коррозия металлов и сплавов под напряжением. Коррозионное растрескивание. Межкристаллитная коррозия. Сопротивляемость материалов кавитационному и эрозионному разрушению. Влияние радиационного облучения на строение и свойства материалов.

Раздел 4 «Технология термической, химико-термической, термомеханической обработки и поверхностного упрочнения материалов»

4.1. Термическая обработка металлов и сплавов

Термическая обработка стали. Основные виды термической обработки стали. Выбор вида термической обработки в зависимости от назначения изделия и условий его эксплуатации. Влияние термической обработки на свойства конструкционных сталей и сварных соединений.

4.2. Химико-термическая обработка металлов и сплавов

Химико-термическая обработка. Общие закономерности. Цементация с последующей термической обработкой. Азотирование. Влияние легирующих компонентов на толщину, твердость и износостойкость азотированного слоя. Структура и свойства азотированной стали. Нитроцементация стали. Диффузионная металлизация: алитирование, хромирование, силицирование и т.п. Многокомпонентные покрытия. Диффузионное насыщение в ионизированных газовых средах.

4.3. Термомеханическая обработка

Термомеханическая обработка. Основные виды: предварительная высокотемпературная, низкотемпературная. Структура и свойства материалов после термомеханической обработки.

4.4. Поверхностно-пластическая деформация металлов и сплавов

Поверхностное упрочнение металлов и сплавов путём воздействия концентрированных потоков энергии. Поверхностное легирование и термическая обработка при лазерном и электронно-лучевом нагреве. Поверхностное упрочнение металлов и сплавов путём воздействия пластической деформации. Физическая сущность процесса. Роль остаточных напряжений. Области применения.

Деформация изделий при их обработке и способы её предупреждения.

Раздел 5 «Металлы и сплавы в машиностроении»

5.1. Конструкционная прочность материалов

Критерии прочности, надежности, долговечности и износостойкости. Методы повышения конструкционной прочности.

5.2. Конструкционные углеродистые и легированные стали

Требования, предъявляемые к конструкционным сталям. Металлургическое качество сталей. Классификация углеродистых сталей по качеству, структуре и областям применения. Влияние углерода и примесей на свойства углеродистых сталей. Углеродистые качественные стали. Автоматные стали. Углеродистые инструментальные стали.

Легированные стали. Влияние легирующих компонентов и примесей на дислокационную структуру и свойства сталей. Классификация и маркировка легированных сталей. Цементуемые (нитроцементуемые) легированные стали. Улучшаемые легированные стали. Пружинные стали общего назначения. Шарикоподшипниковые стали. Износостойкие стали.

5.3. Высокопрочные мартенситностареющие стали

Принципы легирования. Мартенситное превращение. Влияние легирующих элементов на кинетику фазовых превращений и особенности термической обработки. Экономнолегированные мартенситностареющие стали. Свойства мартенситностареющих сталей и области применения.

5.4. Конструкционные и коррозионностойкие стали

Общие принципы легирования и структура коррозионностойких сталей. Хромистые, хромоникелевые, хромомарганцевоникелевые и хромазотистые аустенитные стали. Высоколегированные кислотостойкие стали. Жаростойкие и окалиностойкие стали.

5.5. Жаропрочные стали и сплавы и их типы

Принципы легирования жаропрочных сталей и сплавов. Упрочняющие фазы. Жаропрочные стали перлитного и мартенситного классов. Жаропрочные стали аустенитного класса с карбидным и интерметаллидным упрочнением. Жаропрочные и жаростойкие никелевые сплавы. Термическая обработка жаропрочных никелевых сплавов. Тугоплавкие металлы и сплавы на их основе. Области применения в машиностроении.

5.6. Инструментальные стали

Классификация инструментальных сталей по теплостойкости, структуре и областям применения. Быстрорежущая сталь и особенности ее термической обработки. Штамповые стали для деформирования в горячем и холодном состоянии. Стали для форм литья под давлением и прессования.

5.7. Чугуны

Свойства и назначение чугунов, принципы классификации. Белые, серые, высокопрочные и ковкие чугуны. Фазовые превращения при термической обработке чугуна. Применение в машиностроении

5.8. Цветные металлы и сплавы

Алюминий и его сплавы. Классификация алюминиевых сплавов. Деформируемые алюминиевые сплавы. Литейные алюминиевые сплавы. Особенности термической обработки. Спеченные алюминиевые сплавы. Технологические и механические свойства. Области применение алюминия и его сплавов.

Магний и его сплавы. Классификация магниевых сплавов. Деформируемые и литейные сплавы. Термическая обработка магниевых сплавов. Защита магниевых сплавов от коррозии.

Медь и ее сплавы. Влияние примесей на структуру и свойства меди. Классификация медных сплавов. Латуни, их свойства. Строение и свойства оловянных, алюминиевых, свинцовых, марганцовистых и бериллиевых бронз. Медноникелевые сплавы. Области применения меди и ее сплавов.

Титан и его сплавы. Классификация легирующих элементов и типы сплавов титана. Механические, технологические и коррозионные свойства титановых сплавов. Водородная хрупкость титановых сплавов. Конструкционные и жаропрочные сплавы титана. Особенности термической обработки.

Цинк, свинец, олово и их сплавы. Припои на оловянистой и свинцовой основах. Антифрикционные сплавы.

5.9. Металлы и сплавы с особыми свойствами

Магнитные материалы. Классификация материалов по магнитным свойствам. Кривая намагничивания. Процессы, происходящие при намагничивании монокристалла. Низкочастотные и высокочастотные магнитомягкие материалы. Магнитотвердые деформируемые, литые и спеченные материалы.

Материалы с особыми тепловыми и упругими свойствами. Сплавы с заданными коэффициентом теплового расширения и модулем упругости.

Проводниковые и полупроводниковые материалы. Электропроводность твердых тел. Материалы высокой проводимости: проводниковые, припои, сверхпроводники. Сплавы повышенного электросопротивления. Контактные материалы. Полупроводниковые материалы. Строение и свойства. Кристаллофизические методы получения сверхчистых материалов. Легирование полупроводников.

Материалы атомной техники. Конструкционные материалы. Ядерное горючее. Теплоносители.

Материалы, обладающие эффектом памяти формы. Классификация, структура, физико-механические свойства. Применение в машиностроении.

Раздел 6 «Неметаллические материалы в машиностроении»

6.1. Полимеры и пластические массы

Классификация и структура полимерных материалов. Молекулярная структура полимеров. Теории роста полимерных кристаллов. Особенности механических свойств обусловленные полимеров, ИΧ строением. Релаксационные свойства. Вязкое течение растворов и расплавов полимеров. Старение и стабилизация полимеров. Типы разрушения полимеров. Влияние факторов на процесс разрушения. Физико-механические, адгезионные, фрикционные, антикоррозионные, диэлектрические свойства полимеров, методы исследования этих свойств.

Состав, классификация и свойства пластических масс. Пластмассы на основе термопластичых и термореактивных полимеров. Отвердители,

наполнители, пластификаторы, катализаторы, пигменты, ингибиторы. Методы переработки пластмасс в изделия. Материалы, технология и оборудование для получения полимерных покрытий.

6.2. Композиционные материалы

Принципы создания и основные типы композиционных материалов. Композиционные материалы с нуль-мерными и одномерными наполнителями. Эвтектические композиционные материалы. Композиционные материалы на неметаллической основе. Механические свойства композиционных материалов. Механизм разрушения. Основы расчета на прочность изделий из композиционных материалов. Области и перспективы применения композиционных материалов в машиностроении.

6.3. Резиновые материалы

Состав и классификация резин. Технология приготовления резиновых смесей и формирования деталей из резины. Физико-механические свойства резины. Влияние условий эксплуатации на свойства резин. Применение резиновых материалов в машиностроении.

6.4. Строение, свойства ситалов, керамических и других неорганических материалов

Строение, свойства и виды технического стекла, ситаллов, фарфора и фаянса. Тугоплавкие соединения, основные типы, состав, структура, свойства, методы получения (в том числе, СВС – самораспространяющийся высокотемпературный синтез). Нанокристаллические материалы. Стеклянные смазки и защитные покрытия. Эмали для защиты металлов. Техническая керамика. Огнеупорные и конструкционные керамические материалы. Применение керамики в машиностроении. Графит и его модификации в качестве конструкционных материалов.

6.5. Лакокрасочные и клеящие материалы

Состав и классификация лакокрасочных материалов. Особенности кремнийорганических покрытий. Технологические методы нанесения лакокрасочных покрытий. Технология нанесения лакокрасочных покрытий. Сравнительные свойства лакокрасочных покрытий и их применение в машиностроении.

Клеящие материалы, состав и классификация. Физико-химическая природа. Конструкционные клеи. Состав клеевых соединений. Методы получения клеевых соединений и их испытания. Применение клеевых соединений в машиностроении.

Раздел 7 «Эффективность применения материалов в машиностроении с учётом экономичности, долговечности, безопасности и экологической чистоты»

7.1. Экономическая эффективность выбранного материала

Методика расчёта экономического эффекта за счёт рационального выбора и применения машиностроительных материалов. Сравнительные данные по стоимости углеродистых сталей и сплавов, цветных металлов и сплавов, неметаллических материалов и области их эффективного

применения. Себестоимость различных операций термической и химикотермической, термомеханической обработки материалов.

7.2. Технологическая эффективность выбранного материала

Повышение надёжности, долговечности и безопасности изделий машиностроения за счёт применения новых материалов, обладающих уникальными физико-механическими, технологическими и эксплуатационными свойствами, а также экологической чистотой. Совершенствование технических требований к материалам в нормативнотехнической документации.

3. Примерный перечень вопросов для подготовки к кандидатскому экзамену

- 1. Строение и свойства материалов. Кристаллическое строение твердых тел. Типы кристаллических решеток металлов. Анизотропия свойств кристаллов. Дефекты кристаллического строения.
- 2. Основы электронной теории твердых тел. Теплопроводность, электропроводность и электронная теплоемкость металлов. Магнитные свойства материалов. Диамагнетизм, парамагнетизм, ферромагнетизм.
- 3. Формирование структуры металла при кристаллизации. Энергетические условия и термодинамика процесса кристаллизации. Полиморфизм. Аморфное состояние металлов.
- 4. Строение пластически деформированных металлов. Температура рекристаллизации. Строение металлов после возврата и рекристаллизации. Механизм и стадии процесса рекристаллизации.
- 5. Типы сплавов. Основы теории сплавов. Механические смеси, химические соединения, твердые растворы. Диаграммы состояния железоцементит и железо-графит. Фазовые превращения в стали при нагреве и охлаждении.
- 6. Методы исследования структуры и фазового состава. Металлографические и фрактографические методы исследования, световая и электронная, в том числе дифракционная микроскопия. Рентгеновские методы исследования: структурный и спектральный методы анализа.
- 7. Методы исследования физических свойств и фазовых превращений в металлах и сплавах. Магнитный и электрический методы анализа фазовых и структурных превращений. Метод термо- Э.Д.С. Метод ядерного магнитного резонанса. Метод ядерного гаммарезонанса.
- Физические методы неразрушающего контроля дефектов дефектоскопия. материалов. Ультразвуковая Рентгеновская гаммадефектоскопия. Метод вихревых токов. Магнитная И тепловая дефектоскопия.
- 9. Схемы напряженного и деформированного состояний материалов. Концентрация напряжений. Остаточные напряжения и их классификация.

- 10. Упругие свойства материалов. Модуль упругости и его зависимость от кристаллической структуры материала. Упругое последствие, упругий гистерезис, внутреннее трение.
- 11. Пластическая деформация и деформационное упрочнение Особенности деформации монокристаллов и поликристаллов. Влияние пластической деформации на структуру и свойства материалов. Механизм упрочнения. Упрочнение твердых растворов при взаимодействии дислокаций с примесями внедрения.
- 12. Разрушение материалов. Виды разрушения материалов. Механизмы зарождения трещин. Основы механики разрушения Фрактография как метод количественной оценки механизма разрушения.
- 13. Механические свойства материалов и методы их определения. Классификация методов механических испытаний. Механические свойства, определяемые при статическом, динамическом, циклическом нагружении.
- 14. Хладостойкость и критическая температура хрупкости, методы определения. Синеломкость и тепловая хрупкость. Жаростойкость и жаропрочность. Ползучесть. Длительная прочность. Механизм хрупкого разрушения при ползучести.
- 15. Коррозия металлов и сплавов. Коррозионное растрескивание. Межкристаллитная коррозия. Сопротивляемость материалов кавитационному и эрозионному разрушению.
- Технология термической, химико-термической, термомеханической обработки и поверхностного упрочнения материалов. Структура И свойства материалов термообработанных материалов. воздействия Поверхностное сплавов путем упрочнение металлов пластической деформации.
- 17. Конструкционная прочность материалов. Критерии прочности, надежности, долговечности и износостойкости. Методы повышения конструкционной прочности.
- 18. Конструкционные углеродистые и легированные стали. Требования, предъявляемые к конструкционным сталям. Классификация углеродистых сталей по качеству, структуре и областям применения. Влияние углерода, примесей и легирующих элементов на свойства углеродистых сталей.
- 19. Высокопрочные мартенситностареющие стали. Принципы легирования. Мартенситное превращение. Влияние легирующих элементов на кинетику фазовых превращений и особенности термической обработки. Свойства мартенситностареющих сталей и области применения.
- 20. Конструкционные и коррозионностойкие стали. Общие принципы легирования и структура коррозионностойких сталей. Высоколегированные кислотостойкие стали. Жаростойкие и окалиностойкие стали.
- 21. Жаропрочные стали и сплавы и их типы. Принципы легирования жаропрочных сталей и сплавов. Термическая обработка жаропрочных сплавов. Тугоплавкие металлы и сплавы на их основе. Области применения.

- 22. Инструментальные стали. Классификация инструментальных сталей по теплостойкости, структуре и областям применения. Быстрорежущая сталь и особенности ее термической обработки. Штамповые стали для деформирования в горячем и холодном состоянии. Стали для форм литья под давлением и прессования.
- 23. Чугуны. Свойства и назначение чугунов, принципы классификации. Белые, серые, высокопрочные и ковкие чугуны. Фазовые превращения при термической обработке чугуна. Применение в машиностроении.
- 24. Цветные металлы и сплавы. Области применение алюминия и его сплавов. Классификация магниевых сплавов. Классификация медных сплавов. Типы сплавов титана. Механические, технологические и коррозионные свойства титановых сплавов. Антифрикционные сплавы. Структура и свойства цветных сплавов.
- 25. Металлы и сплавы с особыми свойствами. Магнитные материалы. Материалы с особыми тепловыми и упругими свойствами. Проводниковые и полупроводниковые материалы. Материалы, обладающие эффектом памяти формы.
- 26. Полимеры и пластические массы. Классификация и структура полимерных материалов. Молекулярная структура полимеров. Физикомеханические, адгезионные, фрикционные, антикоррозионные, диэлектрические свойства полимеров. Методы исследования свойств. Пластмассы на основе термопластичых и термореактивных полимеров.
- 27. Композиционные материалы. Принципы создания и основные типы композиционных материалов. Композиционные материалы с нульмерными и одномерными наполнителями. Композиционные материалы на неметаллической основе. Основы расчета на прочность изделий из композиционных материалов. Области и перспективы применения композиционных материалов в машиностроении.
- 28. Резиновые материалы. Состав и классификация резин. Технология приготовления резиновых смесей и формирования деталей из резины. Физико-механические свойства резины. Влияние условий эксплуатации на свойства резин. Применение резиновых материалов в машиностроении.
- 29. Строение, свойства ситалов, керамических и других неорганических материалов. Нанокристаллические материалы. Стеклянные смазки и защитные покрытия. Техническая керамика. Огнеупорные и конструкционные керамические материалы.
- 30. Лакокрасочные и клеящие материалы. Состав и классификация лакокрасочных материалов. Технологические методы нанесения лакокрасочных покрытий. Сравнительные свойства лакокрасочных покрытий. Клеящие материалы, состав и классификация. Физико-химическая природа.

- 3.1. Форма проведения кандидатского экзамена письменно, по билетам, в билете три вопроса.
- 3.2. Критерии оценивания степени полноты и качества освоения программы.

Оценка	Критерии оценки		
«Отлично»	аспирант/соискатель правильно и полностью ответил на три вопроса экзаменационного билета, а также дополнительные вопросы, уточняющие суть ответа, чем показал глубокое, полное знание содержания учебного материала, понимание сущности рассматриваемых явлений и закономерностей, принципов и теорий; умение выделять существенные связи в рассматриваемых явлениях, давать точное определение основным понятиям, связывать теорию с практикой, решать прикладные задачи. Аргументирует свои суждения, грамотно владеет профессиональной терминологией, связно излагает свой ответ		
«Хорошо»	аспирант/соискатель правильно ответил на все вопросы, но недостаточно развернуто, при этом обнаруживает достаточное владение учебным материалом, в том числе понятийным аппаратом; демонстрирует уверенную ориентацию в изученном материале, возможность применять знания для решения практических задач, но затрудняется в приведении примеров. При ответе допускает отдельные неточности		
«Удовлетво- рительно»	аспирант/соискатель в целом правильно ответил минимум на два вопроса билета, излагает основное содержание учебного материала, но раскрывает материал неполно, непоследовательно, допускает неточности в определении понятий, не умеет доказательно обосновать свои суждения		
«Неудовлет- ворительно»	аспирант/соискатель правильно ответил не более чем на один вопрос экзаменационного билета, демонстрирует разрозненные бессистемные знания, не выделяет главное и второстепенное, допускает ошибки в определении понятий, беспорядочно, неуверенно излагает материал, не может применять знания для решения практических задач в соответствии с требованиями программы или вообще отказывается от ответа		

4. Учебно-методическое и информационное обеспечение программы

- 4.1. Перечень рекомендуемой литературы представлен в Приложении 1.
- 4.2. Современные профессиональные базы данных и информационные справочные системы:
- Электронный каталог/Электронная библиотека ТИУ (http://webirbis.tsogu.ru);
 - База данных «ЭБС ЛАНЬ» (<u>https://e.lanbook.com</u>);
 - «Образовательная платформа ЮРАЙТ» «Электронного издательства ЮРАЙТ» (https://www.urait.ru);

- Научная электронная библиотека «eLIBRARY.RU» (http://www.elibrary.ru);
- Цифровой образовательный ресурс IPRsmart (http://www.iprbookshop.ru);
- Научно-техническая библиотека ФГАОУ ВО «РГУ нефти и газа (НИУ) имени И.М. Губкина» (http://elib.gubkin.ru);
- Научно-техническая библиотека ФГБОУ ВО «Уфимский государственный нефтяной технический университет» (http://bibl.rusoil.net);
- Научно-техническая библиотека ФГБОУ ВО «Ухтинский государственный технический университет» (http://lib.ugtu.net/books);
 - Электронно-библиотечная система «Консультант студента» (http://www.studentlibrary.ru);
 - Национальная электронная библиотека (НЭБ) (https://rusneb.ru).

Список рекомендуемой литературы

Программа кандидатского экзамена по специальной дисциплине «Материаловедение»

Шифр и наименование научной специальности: 2.6.17. Материаловедение

№ п/п	Название издания, автор, издательство, вид издания, год издания	Количество экземпляров в БИК	Наличие электронного варианта в ЭБС (+/-)
1	Материаловедение. Технология конструкционных материалов: учебник для вузов / А. А. Гетьман 2-е изд., стер Санкт-Петербург: Лань, 2025 492 с URL: https://e.lanbook.com/book/441662 Режим доступа: для автор. пользователей ЭБС "Лань" ISBN 978-5-507-50509-8: ~Б. ц Текст: непосредственный. https://e.lanbook.com/book/441662		+
2	Материаловедение: учебник для вузов / В. В. Плошкин 4-е изд., пер. и доп М.: Издательство Юрайт, 2024 434 с (Высшее образование) URL: https://urait.ru/bcode/545271 Режим доступа: для автор. пользователей ЭБС "Юрайт" ISBN 978-5-534-18654-3: 1729.00 р Текст: непосредственный. https://urait.ru/bcode/545271		+
3	Материаловедение: учебник для вузов / Г. Г. Бондаренко, Т. А. Кабанова, В. В. Рыбалко 3-е изд., пер. и доп М: Издательство Юрайт, 2024 381 с (Высшее образование) URL: https://urait.ru/bcode/533907 Режим доступа: для автор. пользователей ЭБС "Юрайт" ISBN 978-5-534-17884-5: 1539.00 р Текст: непосредственный. https://urait.ru/bcode/533907		+
4	Материаловедение: учебник для вузов / Ю. П. Солнцев, Е. И. Пряхин Санкт-Петербург: ХИМИЗДАТ, 2024 783 с URL: https://www.iprbookshop.ru/132913.html Режим доступа: для автор. пользователей ЭБС "IPR BOOKS" ISBN 978-5-93808-416-2: ~Б. ц Текст: непосредственный. https://www.iprbookshop.ru/132913.html		+
5	Материаловедение в машиностроении: учебник для вузов / А. М. Адаскин, Ю. Е. Седов, А. К. Онегина, В. Н. Климов 2-е изд., испр. и доп Москва: Юрайт, 2024 536 с (Высшее образование) ЭБС "Юрайт" ISBN 978-5-534-20058-4: 1749.00 р Текст: непосредственный. https://urait.ru/bcode/557509		+
6	Материаловедение сталей и сплавов : учебник для вузов / Ю. Е. Седов, А. К. Онегина 2-е изд., испр. и доп Москва : Юрайт, 2024 166 с (Высшее образование) ЭБС "Юрайт" ISBN 978-5-534-20063-8 : 649.00 р Текст : непосредственный. https://urait.ru/bcode/557514		+
7	Материаловедение: методы исследования структуры и состава материалов: учебное пособие для вузов / Э. В. Суворов 2-е изд., пер. и доп Москва: Юрайт, 2023 180 с (Высшее образование) URL: https://urait.ru/bcode/514643 Режим доступа: для автор. пользователей ЭБС "Юрайт" ISBN 978-5-534-06011-9: 509.00 р Текст: непосредственный. https://urait.ru/bcode/514643		+
8	Материаловедение композиционных и порошковых материалов : учебное пособие / А. А. Кузина, Е. А. Носова Самара : Самарский университет, 2023 92 с URL:		+

№ п/п	Название издания, автор, издательство, вид издания, год издания	Количество экземпляров в БИК	Наличие электронного варианта в ЭБС (+/-)
	https://e.lanbook.com/book/406370 Режим доступа: для автор. пользователей ЭБС "Лань" ISBN 978-5-7883-2009-0: ~Б. ц Текст: непосредственный. https://e.lanbook.com/book/406370		
9	Материаловедение в машиностроении: учебник для вузов: в 2 ч. Ч. 2 / А. М. Адаскин, Ю. Е. Седов, А. К. Онегина, В. Н. Климов 2-е изд., испр. и доп М.: Издательство Юрайт, 2023 291 с (Высшее образование) URL: https://urait.ru/bcode/514008 Режим доступа: для автор. пользователей ЭБС "Юрайт" ISBN 978-5-534-00040-5: 99.66 р ISBN 978-5-534-00041-2: 99.66 р Текст: непосредственный. https://urait.ru/bcode/514008		+
10	Материаловедение неметаллических материалов: учебное пособие / В. И. Саламатов, Н. О. Тютрин, О. В. Мельниченко Иркутск: ИРНИТУ, 2021 94 с URL: https://e.lanbook.com/book/325265 Режим доступа: для авторизир. пользователей ЭБС "Лань" ~Б. ц Текст: непосредственный. https://e.lanbook.com/book/325265		+
11	Материаловедение: учебник для вузов / С. И. Богодухов, Е. С. Козик 2-е изд Москва: Машиностроение, 2020 504 с URL: https://e.lanbook.com/book/175262 Режим доступа: для автор. пользователей ЭБС "Лань" ISBN 978-5-907104-39-6: ~Б. ц Текст: непосредственный. https://e.lanbook.com/book/175262		+
12	Материаловедение и технология полимеров и композитов: учебное пособие / В. А. Гольдаде Гродно: ГрГУ им. Янки Купалы, 2018 351 с URL: https://e.lanbook.com/book/226301 Режим доступа: для автор. пользователей ЭБС "Лань" ISBN 978-985-582-192-3: ~Б. ц Текст: непосредственный. https://e.lanbook.com/book/226301		+

Согласовано:

Библиотечно-издательский комплекс

Для Документов Управания в правания в права

Fan inter of