ОТЗЫВ

официального оппонента на диссертационную работу Ткачева Игоря Геннадьевича «Совершенствование конструкции и методов расчета свайных фундаментов с промежуточным распределительным слоем», представленную на соискание ученой степени кандидата технических наук по специальности 2.1.2. Основания и фундаменты, подземные сооружения

Диссертационная работа Ткачева Игоря Геннадьевича на тему: «Совершенствование конструкции и методов расчета свайных фундаментов с промежуточным распределительным слоем» представляет собой научное исследование, посвящённое одной из актуальных и практически значимых задач современной геотехники — повышению эффективности и надёжности свайных фундаментов за счёт устройства промежуточного распределительного слоя (ПРС), выполняемого между свайным полем и нижней опорной плоскостью фундаментной плиты (ростверка).

Работа состоит из введения, четырёх глав, заключения, библиографического списка из 115 источников и двух приложений. Общий объём диссертации составляет 192 страницы машинописного текста, включая 142 иллюстрации и 20 таблиц. Структура работы логична и соответствует требованиям, предъявляемым к кандидатским диссертациям: от общего обзора состояния вопроса и постановки цели до разработки аналитических и численных моделей, их верификации и демонстрации практического применения.

Во введении обоснована актуальность темы, сформулированы цель и задачи исследования, определены объект и предмет, изложены научная новизна, теоретическая и практическая значимость, представлены положения, выносимые па защиту, приведен личный вклад автора и обоснована достоверность полученных результатов.

современного обобщенному анализу посвящена глава Первая фундаментов с состояния теории и практики применения свайных проведён промежуточным распределительным слоем. Автором отечественных и зарубежных исследований, включая труды известных ученых. Подробно рассмотрены механизмы работы системы «свая - ПРС числе подходы TOM нормативные существующие СП 24.13330.2021, CUR 226, BS 8006), а также различные конструктивные решения.

Особое внимание уделено выявлению недостатков существующих методик: отсутствию универсального аналитического аппарата для учёта совместной работы элементов системы при устройстве ПРС, недостаточной

проработке и оценке вопросов влияния жесткости, толщины ПРС и конструктивных особенностей (включая свайные оголовки) на распределение нагрузки, осадки и несущую способность фундамента. Результатом первой главы стало обоснование необходимости совершенствования как конструктивных решений, так и методов расчёта, что позволило сформулировать актуальность и цель диссертационной работы.

Во второй главе представлены результаты численных исследований, выполненных в ПК MIDAS FEA NX с применением модели грунта Hardening Soil Small Strain (HSS), по оценке влияния нагрузки, шага свай, параметров промежуточного распределительного слоя (ПРС) и применения железобетонных оголовков на распределение нагрузки и деформации системы. Наибольший эффект достигается при устройстве оголовков, которые снижают неравномерность осадок ПРС на 31–64%. Особое внимание уделено анализу работы ПРС при 7–9 балльных сейсмических воздействиях, показавшему снижение горизонтальных усилий в 10–20 раз и изгибающих моментов в сваях в 30–60 раз по сравнению с жёсткой заделкой.

Третья глава посвящена совершенствованию аналитического метода расчёта промежуточного распределительного слоя (ПРС) в составе свайных фундаментов многоэтажных зданий. За основу принят энергетический подход (предложенный М.Б. Мариничевым, 2023) в сочетании с условиями статического равновесия и равенства работ упругих деформаций элементов системы «фундаментная плита – ПРС – сваи с оголовками – грунт основания». В рамках расчётной ячейки из четырёх буровых висячих свай уточнены границы тел в объёме ПРС и прилегающего грунта, построены области предельного состояния и сформулированы условия прочности ПРС и основания. Показано, что учёт железобетонных оголовков, увеличивающих площадь контакта, снижает средние контактные давления в ПРС и напряжения под плитой над сваями; при росте толщины ПРС уменьшается доля давления на грунт между сваями. Корректность методики подтверждена сопоставлением с численными расчётами: расхождение по напряжениям на подошве плиты составляет 15–20% при толщине ПРС до 2,0d, что предложено считать областью её применимости.

Четвёртая глава содержит практические рекомендации и описание результатов практического внедрения. Разработана методика конструирования свайных фундаментов с ПРС, включающая последовательность проектирования: от инженерно-геологических изысканий до геотехнического мониторинга. Предложена классификация технических решений в зависимости от сложности инженерно-геологических условий (простые, средние, сложные, особо сложные), что позволяет обоснованно подходить к выбору конструктивных решений. Приведены примеры внедрения при проектировании фундаментов

высотных зданий в Краснодарском крае, подтверждённые соответствующими справками.

Научная новизна диссертационной работы заключается в следующем:

- 1. Установлены закономерности влияния параметров ПРС, шага и диаметра свай, а также наличия оголовков на распределение нагрузки между сваями и грунтом, в том числе на величину осадок ПРС.
- 2. Разработан аналитический метод расчета ПРС в составе свайных фундаментов, рассматривающий условие его равновесия с учетом анализа сил и напряжений, при этом области предельного состояния заданы кинематическими огибающими, аппроксимированными прямыми линиями.
- 3. Установлено, что устройство ПРС между оголовками свай и подошвой фундаментной плиты при сейсмических воздействиях интенсивностью 7–9 баллов приводит к многократному снижению горизонтальных усилий и изгибающих моментов в сваях в 10–60 раз по сравнению с жёсткой заделкой, что позволяет передавать на сваи преимущественно сжимающие нагрузки и, как следствие, существенно снижать их количество в составе фундамента.
- 4. Предложена классификация технических решений свайных фундаментов с ПРС по категориям сложности инженерно-геологических условий (простые, средние, сложные, особо сложные), что позволяет систематизировать подходы к проектированию свайных фундаментов с ПРС и обоснованно выбирать конструктивные параметры в зависимости от совокупности действующих инженерно-геологических факторов.

Обоснованность и достоверность научных положений, выводов и рекомендаций подтверждаются:

- всесторонним анализом современного состояния проблемы;
- использованием методов механики грунтов, теории упругости и численного моделирования $(MK\mathfrak{P})$;
- сопоставлением результатов аналитических и численных расчётов;
- верификацией математических моделей с помощью лабораторных экспериментов, проведённых на кафедре «Основания и фундаменты» КубГАУ;
- сопоставлением с данными геотехнического мониторинга реальных объектов;
- применением сертифицированных программных комплексов ($MIDAS\ FEA\ NX$).

Достоверность результатов также проверена при их практическом внедрении при проектировании фундаментов высотных зданий в сложных инженерно-геологических условиях Краснодарского края.

Теоретическая значимость работы состоит в теоретическом обосновании закономерностей взаимодействия свайного поля и плитной части фундамента, разделенных ПРС, с учетом устройства железобетонных оголовков свай; а также в разработке аналитического метода расчета работы ПРС при его сжатии под действием внешней нагрузки, передаваемой фундаментной плитой.

Практическая значимость определяется разработкой рекомендаций и метода расчета параметров ПРС, а также технических решений узлов сопряжения оголовков свай с ПРС; результаты работы внедрены в проектах при строительстве фундаментов многоэтажных зданий в сложных инженерно-геологических условиях Краснодарского края в 2013–2024 гг.

Результаты диссертации внедрены при проектировании и строительстве фундаментов многоэтажных и высотных зданий в период с 2013 по 2024 годы. Разработанные методики используются в образовательном процессе КубГАУ. Кроме того, автором в соавторстве с научным руководителем получены патенты РФ на изобретения, посвящённые новым способам устройства свай и их конструктивным решениям.

По теме диссертации опубликовано 19 научных работ, в том числе:

- 3 статьи в изданиях, индексируемых в Scopus/Web of Science;
- 3 статьи в изданиях, включённых в перечень ВАК РФ;
- 3 патента РФ на изобретения (в соавторстве).

Личный вклад автора определяется его участием во всех этапах исследования - от поиска источников и разработки расчётных моделей до интерпретацией расчётов, численных И аналитических выполнения внедрением И разработкой рекомендаций строительства. Автором усовершенствован аналитический метод расчёта с учётом свайных оголовков, сформулированы технические решения и их классификация, а также подготовлены научные публикации и заявки на изобретения.

Вопросы и замечания по диссертации

1. В главе 2 автор достаточно обоснованно выбирает для численного моделирования работы ПРС модель грунта HSS (Hardening Soil Small-strain), что оправдано необходимостью учёта малых деформаций и динамических воздействий. При этом в работе приведён анализ различных моделей грунта, однако отсутствует количественное сопоставление результатов расчётов по модели HSS и более простым моделям (например, Мора-Кулона). Представляло бы интерес узнать, насколько существенно различаются

прогнозируемые значения осадок, распределения нагрузки и усилий в сваях при использовании альтернативных моделей.

- 2. В диссертации (таблица 2.3) приведены результаты численного анализа доли нагрузки, передаваемой на сваи, в зависимости от толщины промежуточного распределительного слоя (ПРС), шага свай и внешней нагрузки. Анализ данных показывает, что с увеличением высоты ПРС с 0.5(s-d) до 2.0(s-d) доля нагрузки, передаваемой на сваи, изменяется незначительно например, при шаге 3d и нагрузке 500 кПа она возрастает с 0.40 до 0.55. Не противоречит ли данный характер изменения распределения нагрузки представлению о том, что более толстый ПРС должен способствовать большему перераспределению нагрузки на грунт и, соответственно, снижению доли, приходящейся на сваи? Как автор объясняет тенденцию к незначительному росту нагрузки на сваи с увеличением толщины ПРС?
- 3. В главе 2 при расчёте здания на сейсмические воздействия предполагается жёсткая заделка свай в ростверк и варианты с ПРС, включая оголовки. Как изменятся результаты, если учитывать податливость соединения свая—ростверк? Были ли проведены такие расчёты?
- 4. Первоначально изучаемый автором способ устройства фундаментов, в т.ч. в наших работах, имел название не «свайные фундаменты с промежуточным распределительным слоем», а «фундаменты на основании, армированном вертикальными жесткими элементами». Что по характеру работы системы, на наш взгляд, более правильно. При этом армоэлементы (например, буронабивные сваи) могут выполняться только в пределах усиливаемого слоя грунта (а выше скважины заполняются грунтом) и иметь «промежуточный распределительный слой» относительно большой мощности. Возникает вопрос, в какой степени в этом случае можно использовать результаты данной диссертации?

Заключение

Диссертация Ткачева Игоря Геннадьевича на тему «Совершенствование конструкции и методов расчета свайных фундаментов с промежуточным распределительным слоем» выполнена на высоком научно-техническом уровне, обладает логичностью изложения, полнотой изучения и сочетанием теоретических и численных исследований. Предложенные автором решения – как в части совершенствования аналитических методов расчетов, так и в области конструктивных решений с применением оголовков свай и учетом инженерно-геологических условий – являются актуальными и востребованными для современной геотехники. Разработанная методика расчета может

быть внедрена в инженерную практику проектирования фундаментов зданий и сооружений, возводимых в сейсмических районах. Работа отражает высокий уровень научной самостоятельности автора, его способность решать сложные задачи, стоящие перед строительной отраслью, и вносит весомый вклад в развитие теории и практики расчета свайных фундаментов с распределительными слоями.

Диссертационная работа Ткачева И.Г. на тему: «Совершенствование конструкции и методов расчета свайных фундаментов с промежуточным распределительным слоем» соответствует паспорту научной специальности 2.1.2. Основания и фундаменты, подземные сооружения, в частности пунктам 3, 4 и соответствует требованиям документа «О порядке присуждения ученых степеней», утвержденного постановлением Правительства РФ от 24.09.2013 № 842, а ее автор, Ткачев Игорь Геннадьевич, заслуживает присуждения ученой степени кандидата технических наук по специальности 2.1.2. Основания и фундаменты, подземные сооружения.

Фамилия, имя, отчество: Нуждин Леонид Викторович

Ученая степень, ученое звание: кандидат технических наук, доцент

Научная специальность: 05.23.02 (2.1.2) — Основания и фундаменты, подземные сооружения

Место работы: Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный архитектурно-строительный университет (Сибстрин)»

Должность: профессор кафедры «Инженерная геология, основания и фундаменты», заведующий НИЛ «Динамика оснований и фундаментов».

Почтовый адрес: 630008, Новосибирская область, г. Новосибирск, ул. Ленинградская, д. 113

Контактный телефон: 8-913-912-54-67

Адрес электронной почты: nuzhdin_ML@mail.ru

Л.В. Нуждин (подпись) (фио)

Согласен на включение персональных данных в документы, связанные с работой диссертационного совета, и их дальнейшую обработку.

