Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Клочков Юрий Серин НИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ

Должность: и.о. ректора

Дата подписания: 04.10.2024 15:06:43

РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный программный ключ: Федеральное государственное бюджетное

4e7c4ea90328ec8e65c5d8058549a2538d7400d1 образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ» Институт транспорта

ПРОЕКТИРОВАНИЕ МАШИН И ОБОРУДОВАНИЯ ДЛЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ, СТИХИЙНЫХ БЕДСТВИЙ, ТУШЕНИЯ ПОЖАРОВ

Методические рекомендации по выполнению курсовых проектов по дисциплине для обучающихся по специальности 23.05.01 - Наземные транспортно-технологические средства специализации «Технические средства природообустройства и защиты в чрезвычайных ситуациях» очной формы обучения

Составители

Шаруха А. В., кандидат технических наук, доцент Костырченко В. А., старший преподаватель

> Тюмень ТИУ 2024

Проектирование машин и оборудования для ликвидации последствий чрезвычайных ситуаций, стихийных бедствий, тушения пожаров: методические рекомендации по выполнению курсовых проектов по дисциплине для обучающихся по специальности 23.05.01 - Наземные транспортно-технологические средства специализации «Технические средства природообустройства и защиты в чрезвычайных ситуациях» очной формы обучения / сост. Шаруха А. В., Костырченко В. А.; Тюменский индустриальный университет. – Тюмень: Издательский центр БИК ТИУ, 2024. – 25 с. – Текст: непосредственный.

Руководитель образовательной программы: В. А. Костырченко, старший преподаватель

Методические рекомендации рассмотрены и рекомендованы к изданию на заседании кафедры «Транспортные и технологические системы» «29» августа 2024 года, протокол № 1

Аннотация

Методические рекомендации по выполнению курсовых проектов по дисциплине «ПРОЕКТИРОВАНИЕ МАШИН И ОБОРУДОВАНИЯ ДЛЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ, СТИХИЙНЫХ БЕДСТВИЙ, ТУШЕНИЯ ПОЖАРОВ» для обучающихся по специальности 23.05.01 - Наземные транспортно-технологические средства специализации «Технические средства природообустройства и защиты в чрезвычайных ситуациях» очной формы обучения.

1. ВАРИАНТЫ ЗАДАНИЙ

Вариант 0. Завод (узел) для производства дорожных смесей

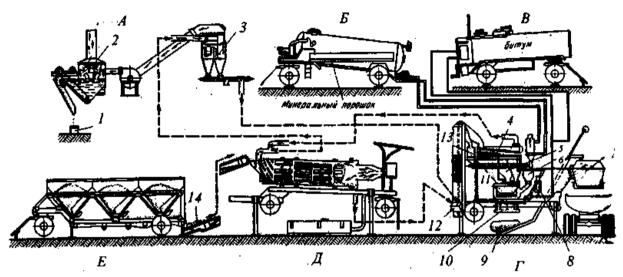


Рис. 1. Схема технологического процесса приготовления асфальтобетонной смеси в установке периодического действия повышенной мобильности

Таблица 1.1

Под- вариант	0	1	2	3	4	5	6	7	8	9
Тип завода	АБ	ЦБ	CC	Сн	ЦБ	CC	АБ	АБ	ЦБ	АБ
Произво- дитель- ность, м ³ /ч	6	12	10	8	12	14	25	5	32	18
Мобиль- ность	M	M	С	M	С	С	С	M	С	С

Сокращения: АБ – асфальтобетонный; ЦБ – цементобетонный; СС – сухих смесей; Сн – снежных материалов. М — мобильный; С — стационарный.

Перечень разрабатываемых разделов:

Пояснительная записка:

Чертежи формата А1.

1. выбор и расчет смесителя;

1. схема завода;

2. расчет дозатора жидких вяжущих;

2. смеситель;

3. годовая производительность

3. схема технологической цепочки.

Вариант 1. Комбинированная коммунальная машина

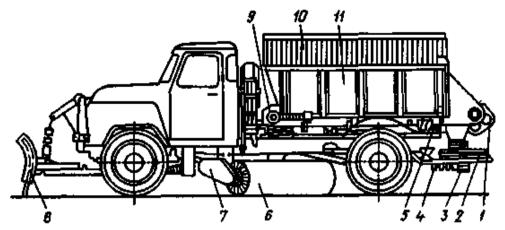


Рис. 2. Комбинированная коммунальная машина:

1 - редуктор привода конвейера; 2 - разбрасывающий диск; 3 - редуктор диска; 4 - гидромотор привода диска; 5 - гидромотор привода конвейера; 6 — щетка; 7 - цепная передача; 5 - плуг; 9 - конвейер; 10 - решетка; 11 – кузов.

Таблица 1.2

									I acomi	
Под- вариант	0	1	2	3	4	5	6	7	8	9
Сезон исполь- зования	Л	Ун	3	Ун	3	Л	Л	3	Ун	3
Оборудо- вание	щет	щетка (поз. 6)			ровоз . 11)	полі	иво- чное	лител	и расп пь реаго поз. 8, 2	ентов
		Производительность:								
M^2/H	800	600	400	_	_	600	900	1200	400	700
т/ч	-	-	_	12	20	6	12	14	10	12

Сокращения: Π – летнего содержания; 3 – зимнего содержания; Y_H – универсальная.

Перечень разрабатываемых разделов:

Пояснительная записка: Чертежи формата А1.

1. выбор прототипа; 1. общий вид;

2. тяговый и мощностной балансы; 2. рабочий орган;

3. производительность сменная. 3. схема к определению производительности машины

Вариант 2. Комплексы по ремонту дорог

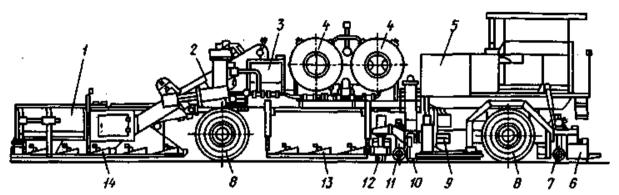


Рис. 3. Машина для термического восстановления и ремонта асфальтобетонных покрытий

Под- вариант	0	1	2	3	4	5	6	7	8	9
Тип покры- тия	АБ	ЦБ	УП	ЦБ	ЦБ	УП	АБ	Сн	ЦБ	АБ
Произ- водитель- ность, м ² /ч	50	28	45	26	75	60	65	110	108	80
Вид ремонта	Γ	X	P	R	К	ГС	R	К	К	X

Сокращения: AB — асфальтобетонных; UB — цементобетонных; $V\Pi$ — с усовершенствованным покрытием; CH — из снежных материалов. SH — ямочный ремонт; LF, LF — горячий и холодный способы ремонта; LF — ресайклер; LF — грунтосмесительная машина; LF — капитальный ремонт покрытия.

Перечень разрабатываемых разделов:

Пояснительная записка:

Чертежи формата А1.

1. тяговый и мощностной балансы;

1. общий вид;

2. подбор термического

2. рабочий орган;

оборудования;

3. производительность сменная.

3. схема к определению рабочих

параметров машины

Вариант 3. Машины для летнего содержания дорог и их элементов

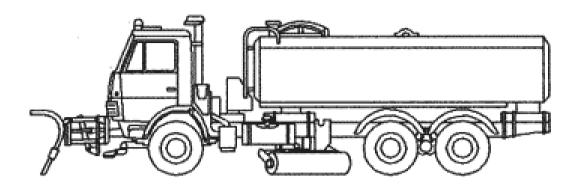


Рис. 4. Машина поливомоечная

Под- вари ант	0	1	2	3	4	5	6	7	8	9
Обор удов ание	щето	чное	кустор	резное	полі моеч			мный рщик	размет	
			I	Троизво	дитель	ность:				
т/ч	-	-	1,2	8	-	-	1,4	3,5	-	-
м ² /ч	4200	1800	-	-	6000	9500	-	-	20	25
База	AOH	TK	ГТ	TK	AOH	TK	СШ	AOH	СШ	С
										Ш

Сокращения: АОН – автомобиль общего назначения; ГТ – трактор гусеничный; ТК – трактор колесный; СШ – специальное шасси.

Перечень разрабатываемых разделов:

Пояснительная записка:

Чертежи формата А1.

1. тяговый и мощностной балансы;

1. общий вид;

2. подбор технологического оборудования;

2. рабочий орган (по указанию преподавателя);

npenoz

3. производительность сменная.

3. схема к определению рабочих

параметров машины

Вариант 4. Машины для возведения асфальтовых дорог

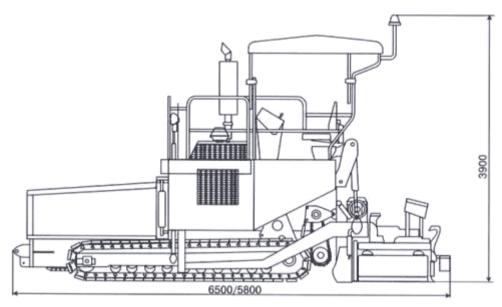


Рис. 5. Асфальтоукладчик гусеничный

									1 403111	ща 1.5
Под-	0	1	2	3	4	5	6	7	8	9
вариант										
Обору-	оофон	асфапьтоукпапчик			авто-		нарезчик		асфальтов	
дование	асфал	асфальтоукладчик			гудронатор швов		каток			
Производительность, τ/Ψ (M^2/Ψ)										
	100	400	260	6	28	-	-	(250)	(800)	(650)
База	Γ	P	К	AOH	Π	СШ	П	ПК	ГВ	ВΠ
Глубина										
действия,	185	250	300	4	6	300	145	140	100	250
MM										

Сокращения: Г – гусеничный; Р – рельсовый; К – колесный; АОН - автомобиль общего назначения; П – прицепной; СШ - специальное шасси; ПК – пневмоколесный; ГВ – гладковальцовый; ВП – вибрационный.

Перечень разрабатываемых разделов:

Пояснительная записка: Чертежи формата А1.

1. тяговый баланс; 1. общий вид;

2. мощностной баланс; 2. робочий орган;

3. производительность сезонная. 3. схема к определению рабочих параметров машины.

Вариант 5. Машины для уплотнения дорожных материалов

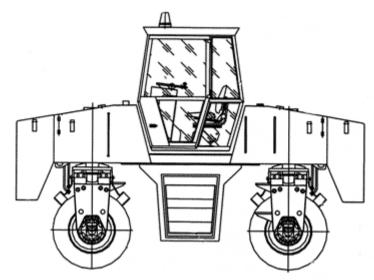


Рис. 6. Каток пневмоколесный вибрационный.

Таблица 1.6

Под- вариант	0	1	2	3	4	5	6	7	8	9
Тип	T	ВК	ГК	СК	ПК	3К	BT	ГК	ВП	ПрК
Глубина действия,	500	320	250	-	120	225	550	280	300	100
MM										

Уплотняемый материал – задает преподаватель

Уплотняемость материала 40-95% (определяется самостоятельно)

Свойства уплотняемого материала - определяется самостоятельно

Сокращения: T — трамбовка; BK — вибрационный каток; ΓK — грунтовый каток; CK — для снежный материалов; ΠK — пневмоколесный каток; 3K — зубчатый каток; BT — вибрационная трамбовка; $B\Pi$ — виброплита; ΠpK — прицепной каток.

Перечень разрабатываемых разделов:

Пояснительная записка: Чертежи формата А1.

1. выбор прототипа; 1. общий вид;

2. тяговый баланс, устойчивость; 2. рабочий орган;

3. производительность часовая. 3. схема к определению устойчивости машины при наезде на препятствие.

Вариант 6. Комплексы, применяемые при производстве бетонных дорог

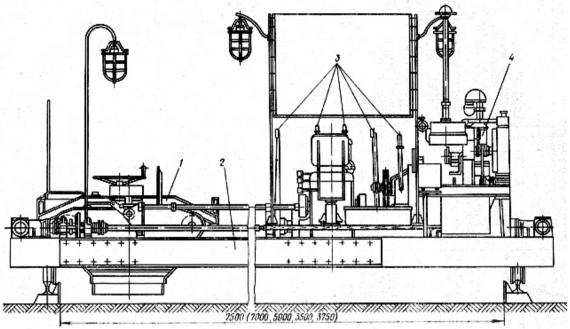


Рис. 7. Бетоноукладчик гусеничный.

Таблица 1.7

									иолиц	
Под-вариант	0	1	2	3	4	5	6	7	8	9
Оборудование	бетоноукладчик			риброрейка		нарезчик		бетоноотделочн		ІОЧН
	остопоукладчик			виоро	рсика	ШВОВ		ая	машин	ıa
Параметр	Н	В	П	Н	В	Н	n	n	V	A
	250	12,5	8	60	7,5	185	2350	350	0,82	0,8 5

Сокращения: H — высота (глубина) обрабатываемого слоя материала, мм; B — ширина обрабатываемой полосы покрытия, м; Π — производительность часовая, τ/τ ; τ — частота оборотов рабочего органа в минуту; τ — рабочая скорость машины, м/мин; τ — амплитуда колебаний рабочего органа, мм.

Перечень разрабатываемых разделов:

Пояснительная записка:

Чертежи формата А1.

1. тяговый и мощностной балансы;

1. общий вид;

2. параметры рабочего органа;

2. рабочий орган (по выбору);

3. производительность часовая.

3. схема к определению рабочих

параметров машины.

Вариант 7. Машины для земляных работ в дорожном строительстве.

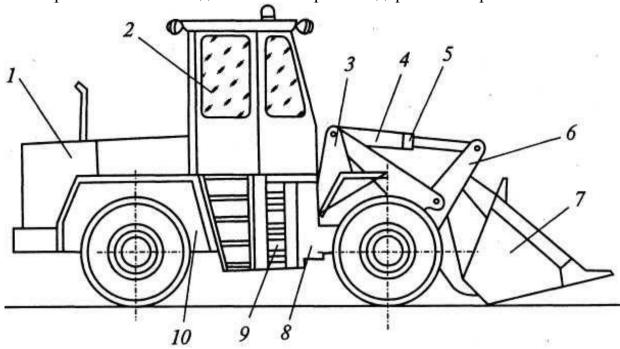


Рис. 8. Фронтальный одноковшовый погрузчик ТО-28А

Таблица 1.8

Под- вариант	0	1	2	3	4	5	6	7	8	9
Тип	БР	С	A	ЭО	ЭТ	Б	ГСм	TO	ДП	БКМ
Сезон	У	Л	У	Л	3	3	Л	У	3	3

Сокращения: БР – бульдозер-рыхлитель; С – скрепер; А – автогрейдер;

 Θ — одноковшовый экскаватор; Θ — траншейный экскаватор (баровая

машина); Б – бульдозер; ГСм – грунтосмесительная машина;

TO- погрузочная машина; $Д\Pi-$ машина для подготовительных работ;

БКМ – бурильная, бурильно-крановая машина. Л - лето; 3 - зима; У – все сезоны года.

Перечень разрабатываемых разделов:

Пояснительная записка: Чертежи формата А1.

1. тяговый и мощностной балансы; 1. общий вид;

2. подбор сменного оборудования; 2. рабочий орган (по выбору);

3. производительность часовая. 3. схема к определению рабочих

параметров машины

Вариант 8. Оборудование для хранения, транспортирования, разогрева и хранения органических вяжущих веществ (битума).

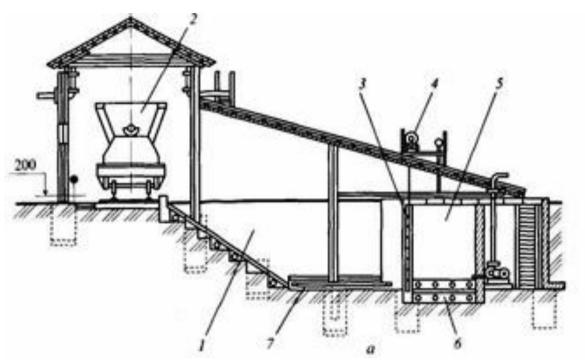


Рис. 9. Битумохранилище капитального типа

									1 403111	ща 1.7
Под-										
вари-	0	1	2	3	4	5	6	7	8	9
ант										
Обо-										
рудо-	битум	охрани	лище	нагре	ватель	доза	атор	транс	порт бі	итума
вание										
		Производительность, м3/ч								
	1000	2000	450	200	26	140	100	25	12	8

Перечень разрабатываемых разделов:

Пояснительная записка:

Чертежи формата А1.

1. расчет емкости, запаса;

1. общий вид;

2. подбор перекачивающего

2. принципиальная схема насосного

оборудования;

агрегата;

3. производительность сменная.

3. схема к определению рабочих

параметров машины.

Вариант 9. Машины для зимнего содержания улиц, проездов и дорог.

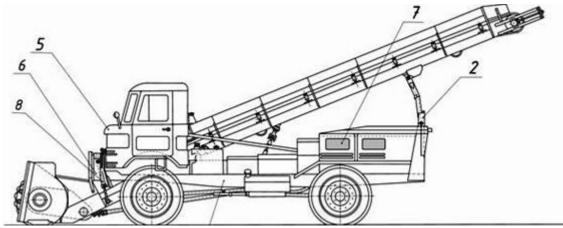


Рис. 10. Снеговой погрузчик УП-66

Под- вари- ант	0	1	2	3	4	5	6	7	8	9
Тип	ШР	СнП	ПС	РФА	TO	A	Ун	ΦС	ПР	УС
			Π	роизвод	дительн	ность, т	/ч			
	190	25	16	80	100	75	68	55	5	89
База	AOH	СШ	KT	ГТ	КТ	-	-		AOH	-

Сокращения: ШР — шнекороторный снегоочиститель; Сн Π — снегопогрузчик;

ПС – плужный снегоочиститель; РФА – роторно-фрезерный агрегат;

TO- одноковшовый погрузчик; A- автогрейдер; Ун- универсальная комбинированная дорожная машина; $\Phi C-$ фрезерный снегоочиститель;

ПР – распределитель антигололедных реагентов, пескоразбрасыватель;

УС – машина для утилизации снежных масс.

АОН - автомобиль общего назначения; СШ - специальное шасси;

КТ - колесный трактор; ГТ – гусеничный трактор.

Перечень разрабатываемых разделов:

Пояснительная записка: Чертежи формата А1.

1. тяговый и мощностной балансы; 1. общий вид;

2. подбор транспортного 2. рабочий орган; оборудования;

3. производительность годовая. 3. схема к определению рабочих

параметров машины.

2. ОБЩИЕ ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РАБОТЫ

Цель курсовой работы — закрепить и углубить знания студентов по теории, расчету и конструированию дорожных, коммунальных машин и оборудования. В работе должен быть произведен выбор основного и вспомогательного оборудования машин или технологических цепочек, дана предварительная и окончательная компоновка рабочих органов, выполнены конструктивная разработка $2\div 3$ узлов проектируемой установки и расчет основных конструктивных и технологических параметров машин с рабочими чертежами.

В состав курсовой работы входят расчетно-пояснительная записка (30-50 страниц) и графическая часть, включающая три чертежа на листах формата A1.

Записка включает следующие вопросы:

- Исходные данные к проектированию (индивидуальное задание);
- Анализ состояния вопроса;
- Обоснование выбора прототипа исследуемой машины или технологической цепочки завода, установки;
- Расчет основных параметров машины или оборудования (производительность, параметры рабочего цикла и т.п.);
 - Конструкторская проработка узла, механизма, детали;
 - Заключение по работе (вывод).

В расчетно-пояснительной записке к проекту оборудования завода или установки должно быть дано описание технологического процесса с технико-экономическим обоснованием выбора основного и вспомогательного оборудования и с проверочным расчетом частей основной машины.

В расчетно-пояснительной записке к проекту отдельной машины должно быть дано краткое описание конструкции машины и ее рабочего процесса; выполнен проверочный расчет основных узлов и деталей машины и приведены сравнительные технологические показатели проектируемой машины с показателями аналогичной при одном и том же объеме работ.

В состав графической части, как правило, входят:

- общий вид разрабатываемой машины, оборудования;
- расчетная схема для определения конструктивных и технологических параметров исследуемого объекта;
 - конструкция узла, механизма, детали.

Все чертежи проекта должны выполняться в соответствии с действующими ГОСТами единой системы конструкторской документации.

Кроме того, для обеспечения непрерывности компьютерной подготовки студента рекомендуется использовать при выполнении

соответствующих разделов курсовой работы современное программное обеспечение автоматизации проектных процедур — CAD\CAM\CAE. Рекомендации по использованию программного продукта САПР приведены ниже в таблице 2.1.

Таблица 2.1. Пример подбора программного обеспечения САПР.

• •	подобра программного обеспеч	
этап	преобладающий тип	применяемая
проектирования	проектной информации	программа
Выдача задания на	Текст задания,	Текстовые
курсовую работу.	таблицы с данными,	редакторы,
	список основных элементов	«Microsoft Word»
	объекта проектирования	«Microsoft Excel»
Анализ научной,	Библиотечные издания,	Программы
технической,	компьютерные базы данных,	сканирования и
патентной,	сайты заводов-	обработки текста
нормативной	изготовителей,	«Fine Reader» и т.п,
информации,	специализированные	поисковые
найденных методик	отраслевые сайты, списки	программы сетей и
расчета элементов	литературы,	баз данных и т.д.
разрабатываемой	информационных	
машины или	источников	
оборудования.		
Разработка проектно-	Пояснительная записка с	«Microsoft office»
конструкторского	соответствующими	«MathCAD»,
решения	расчетами, схемами,	«MathLab»,
	графиками, а также листы	«Statistic»,
	спецификаций.	«Regress» и т.п.
Оформление	Пояснительная записка,	«Microsoft office»,
проектно-	Листы с чертежами,	«AutoCAD»,
конструкторского	схемами, таблицами и т.д.	«Компас»,
решения		«Corel DRAW»,
		«Solid WORKS»

3. ОБЩИЕ ВОПРОСЫ КУРСОВОГО ПРОЕКТИРОВАНИЯ

3.1. Задание на курсовое проектирование.

Индивидуальное письменное задание на проектирование является основным документом для студента при выполнении курсовой работы. Задание оформляется в виде бланка по утвержденной форме, подшиваемого после титульного листа расчетно-пояснительной записки.

Студент должен хорошо знать объём и требования, предъявляемые к курсовой работе. Эти требования в каждом конкретном случае определяются кафедрой и преподавателем-руководителем работы. В

письменном задании на проектирование отражается содержание каждого листа графической части работы и пояснительной записки.

В задании на курсовую работу ведущим преподавателем указывается тип машины (по таблицам раздела 1), основные технические параметры, условия эксплуатации машины или оборудования, дополнительные данные и задания, например, научно-исследовательского характера. Кроме того, студент согласовывает с ведущим преподавателем перечень рекомендуемой литературы или информационных источников, сроки представления готовой работы к защите, дату выдачи задания и принятия студента к исполнению.

3.2. Содержание расчетно-пояснительной записки.

Структура и объем записки, формируемой студентом при выполнении расчетных и аналитических разделов, закрепляется отдельным листом — содержанием. Студент перечисляет все значимые разделы и пункты текста записки в виде перечня с указанием порядкового номера страниц. Соответственно все страницы пояснительной записки должны иметь номер, указываемый предпочтительно в верхнем левом углу страницы.

3.3. Анализ состояния вопроса.

В процессе выполнения курсового проектирования студенту необходимо выбрать наиболее рациональное решение поставленной перед ним задачи и показать умение пользоваться учебными пособиями, справочниками, периодической литературой, а также материалами проектных организаций и производств. Решения, принимаемые в курсовой работе, должны отличаться прогрессивностью и в большинстве случаев приводить к повышению качественных показателей исследуемой машины или оборудования.

Достижение указанных задач возможно только при всестороннем анализе всех доступных информационных источников, посвященных как технологиям, так новейшим разработкам в проблемной области соответствующей теме работы.

Рекомендуется при анализе информации ориентироваться как на отечественные, так и зарубежные конструкции машин и оборудования.

3.4. Обоснование выбора прототипа исследуемой машины.

Для успешного завершения курсового проектирования студент должен выбрать тип или конкретный прототип машины и продумать, что нового он должен внести в конструкцию машины; выполнить эскизы, схемы, произвести отдельные расчеты и технико-экономические сравнения возможных вариантов.

В указанном разделе желательно привести несколько аналогов

разрабатываемой машины с указанием технических характеристик, схем, фотографий сравниваемых объектов. Также рекомендуется выделить основные и второстепенные параметры, относительно которых будет оптимизироваться конкретное решение. Например, при выборе базового шасси для транспортно-технологической машины в качестве основного параметра принимается размеры опорного контура, задаваемого выносными опорами. Второстепенным можно принять параметры собственного опорного контура пневмоколесного шасси.

Обоснование выбора прототипа также подтверждается предварительным расчетом производительности проектируемой машины .

3.5. Расчет основных параметров машины.

Основу качества выполнения курсовой работы задает выбор расчетной методики, а также последовательность существующих алгоритмов для расчета элементов машин. Основные методики расчета элементов ПТСДМ приводятся в полном объеме в курсе дисциплины «Детали машин и основы конструирования», а также в учебных пособиях и справочниках соответствующей тематики. Во всем многообразии узлов и элементов машин выделятся основные принципы их построения, а, следовательно, их расчетов.

В общем случае общая задача проектирования может быть расчленена на следующие частные:

- 1. Обоснование расчетами взаимосвязи конструктивных и технологических параметров рабочего органа машины.
- 2. Силовые и кинематические расчеты базового шасси или опорного устройства.
- 3. Энергетический или мощностной баланс привода машины или установки.
- 4. Проверочные и оптимизационные расчеты вышеуказанных параметров.

При решении задач сначала намечается ход решения и те допущения, которые могут быть положены в его основу, а затем приводится решение.

Все вычисления выполняются вначале в общем виде, обозначая все данные и искомые величины буквами, а затем вместо буквенных обозначений подставляются числовые значения и полученный результат. Необходимо придерживаться принятых стандартных обозначений, а также использования одной системы выражения всех единиц физических величин — системы СМ.

Решение должно быть выполнено в определенной последовательности, чтобы был вид логический ход решения, обосновано теоретически и пояснено необходимостью текстом и краткими формулами, выполняемых действий.

Полноту, правильность использования расчетных методик оценивает ведущий преподаватель при выполнении и защите курсовой работы.

3.6. Конструкторская проработка узла, механизма, детали.

Конструктивная часть проекта выполняется на двух-трех листах формата А1. Чертежи и расчеты нужно выполнять параллельно: попеременно расчеты опережают конструирование или выполняются вслед Разработка разработкой конструкции. кинематической машины и конструктивной формы отдельных деталей механизмов проектирования. первую стадию Следующий составляет проектирования - расчет узлов и деталей, создание чертежей. Никогда не надо задерживать начало вычерчивания механизмов до полного окончания расчета. Это ошибка начинающих проектировщиков почти всегда ведет за собой бесполезную трату времени на переделки расчетов и неожиданные неувязки при вычерчивании.

При проведении расчетов деталей и узлов машин необходимо указывать литературу с отметкой страниц, таблиц, откуда взяты расчетные формулы, допускаемые напряжения и другие нормативные данные и величины.

Рекомендуется начинать графическую часть с выполнения чертежа общего вида машины, завода, установки. Он должен вычертить эскиз проекта машины в составе одного листа общего вида или принципиальной схемы (кинематической, управления, технологии работы и т. п.) — в том случае, если эта схема является элементом самостоятельной разработки по заданию.

Как правило, чертежи общего вида и расчеты к нему завершаются и оформляются после уточнения и внесения в них итогов расчетно—графических работ, которые проводятся над отдельными группами, узлами.

Общий вид машины должен представлять компоновочный чертеж, выполненный строго в масштабе в двух-трех проекциях без каких бы то ни было вырисовываний мелких деталей, т. е. общий вид машины в курсовом проекте — это чертеж эскизного проекта (графически в какой-то мере подобен габаритному чертежу). Однако поскольку он в учебном проектировании используется для дальнейшей разработки и взаимной увязки чертежей технического проекта групп и рабочей документации узлов, в нем должна быть отражена и технологическая цель: он должен служить как бы сборочным для всего изделия (машины).

Размеры ставятся: габаритные, установочные, определяющие взаимное расположение частей машины; показывающие рабочие и транспортные положения оборудования, ходовых частей, т.е. размеры, необходимые сборки ДЛЯ машины для технико-В целом И эксплуатационной ее характеристики.

чертеже общего вида машины МОГУТ быть помещены: техническая характеристика; кинематическая, гидравлическая и другие схемы машины или ее частей — все на свободном поле чертежа. Заголовок «Техническая характеристика» пишут и подчеркивают, дают нумерацию пунктов арабскими цифрами. В характеристике целесообразно давать технико-эксплуатационные показатели габаритных И иных размеров И массы машины показателей, содержащихся в чертеже, в основной надписи. Схемы выполняются без масштаба, к ним даются краткие таблицы или надписи.

В процессе разработки общего вида машины ориентировочно составляют технологический перечень комплектации изделия и намечают индексацию его частей. Это определит степень подробности выполнения чертежа общего вида, количество позиций, предусматриваемых в перечне составных частей. В последнем даются сборочные единицы и детали, которые в процессе изготовления машины намечаются к сборке, отраженной чертежом на данной стадии проектирования. Как правило, это не отдельные сборочные единицы (узлы), а их совокупности (группы), имеющие общие функциональные назначения и совместно устанавливаемые в машине, например: мост крана, грузовая тележка, ковш скрепера в сборе, установка двигателя, кабина, система гидроуправления и т. п.

В чертеже общего вида группы (совокупности сборочных единиц) нужно дать изображение узлов, деталей, входящих в группу, как правило, без разрезов и пунктирных изображений; дать размеры, определяющие их взаимное расположение; если нужно, дать линии построения контура важнейших положений движущихся или устанавливаемых частей.

Схемы, графики здесь вычерчивать не следует, кроме тех, которые необходимы для понимания порядка сборки и взаимного расположения частей (узлов) при сборке в цехе; размеры габаритные и установочные.

Перечень составных чертежей (на отдельном листе) содержит сборочные единицы с добавлением соединительных деталей, входящих непосредственно в группу. '

Чертежи узла (сборочной единицы) выполняются в возможно более крупном масштабе, как рабочие конструктивные сборочные чертежи узла, входящего в группу; со всеми разрезами, с подробным вычерчиванием всех деталей в узле по ГОСТу, с дополнительными проекциями, сечениями, выносными элементами — для выявления формы, взаимного расположения частей, деталей и для возможности указания позиций, подробной спецификации. Это — чертежи для сборки узла, а также для выполнения деталировки.

Размеры — габаритные, между осями основных деталей и крепежных болтов, мест посадки деталей на валы и оси с указанием обозначений посадки по ГОСТу без числовых значений допусков.

Спецификация — подетальная; ее следует составлять в полном объеме по форме согласно ГОСТ 2.108—68; для уменьшения времени, затрачиваемого студентом на оформление, допускается укрупнение спецификации объединением узлов в более крупные узлы, а деталей — в узлы по технологическому принципу изготовления изделия.

Каждый формат чертежа должен иметь рамку, обеспечивающую поля: с левой стороны 20 мм; справа, снизу и сверху по 5 мм.

В правом нижнем углу каждого формата от линии рамки помещается основная надпись (угловой штамп). Спецификация по ГОСТ 2.108 составляется на отдельных листах. Однако в учебных проектах допускается выполнение спецификации над основной надписью.

Применяют следующие масштабы уменьшения: 1:2; 1:2,5; 1:4; 1:5; 1:10; 1:15; 1:20; 1:25; 1:40; 1:50; 1:75; 1:100; 1:200; 1:400; 1:500; 1:800; 1:1000. Для чертежей деталей можно применять масштабы увеличения: 2:1; 2,5:1; 4:1; 5:1; 10:1; 20:1.

Содержание графического материала курсовых проектов по различным дисциплинам различное и приводится в соответствующих главах настоящего пособия.

В процессе выполнения графического материала чертежи вычерчивают в тонких линиях твердыми остро отточенными карандашами, а после разрешения руководителя проекта обводят в соответствии с ГОСТ 2.303и снабжают их необходимыми надписями и размерами.

3.7. Заключение по работе.

В заключении к работе должно быть дано краткое описание конструкции разработанной машины и ее рабочего процесса; ссылки на расчет основных узлов и деталей машины и приведены сравнительные технологические показатели проектируемой машины с показателями аналогичной при одном и том же объеме работ.

3.8. Завершение проектирования и защита работы.

Работа, выполненная в полном объеме, сдается в установленный срок на предварительную проверку преподавателю, после чего подлежит защите.

Выполненный курсовой проект подписывается исполнителем и руководителем, а затем предъявляется к защите в присутствии учебной группы. Присутствие на защите одногруппников имеет большое воспитательной значение, так как приучает автора выступать перед аудиторией и, в частности, готовит его к защите дипломного проекта.

Учащийся, защищающий курсовой проект, обосновывает принятые им решения и отвечает на вопросы, задаваемые ему руководителем проекта и присутствующими на защите. При оценке проекта учитывают качество его выполнения, сообщение о его содержании и ответы на вопросы.

4. РЕКОМЕНДУЕМЫЕ ЗАВИСИМОСТИ ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МАШИН И ОБОРУДОВАНИЯ

Производительность машины или установки есть то количество продукта (строительного материала, грунта, смета и т.д.), которое может быть выработано за определенный промежуток времени и выражается в тоннах (т), величинах кратных метру (м, m^2 , m^3), штуках (шт) и т.п.

Теоремическая (расчемная) производительность характеризует 1 ч непрерывной работы машины при номинальной (расчетной) нагрузке, при использовании ее в условиях, для которых она спроектирована.

Техническая производительность характеризует машину за 1 ч непрерывной ее работы, но с учетом фактической объема, массы продукта, перемещаемого или преобразуемого машиной (установкой).

Эксплуатационная производительность учитывает использование машины (устройства) по загрузке, по рабочему времени при данном виде работ и служит основанием для разработки проектов механизации и автоматизации работ по строительству и содержанию линейных объектов - дорог, а также производственных норм. Эксплуатационная производительность может быть определена за 1 ч работы, смену, месяц, квартал и год.

Функциональную зависимость факторов, влияющих на производительность машин в процессе ее работы, можно представить в следующем виде:

для машин непрерывного действия:

$$\Pi_H = f(k_B, q_{\Gamma P}, \nu, T_{\Gamma P}) \tag{1}$$

для машин периодического действия:

$$\Pi_H = f(k_B, k_{\text{IP}}, G_{\text{IP}}, T_{\text{IP}}, \nu_{\text{IP}}, \nu_{\text{II}}, \nu_K, T_{\text{IP}})$$
(2)

где $^{k_B,k_{\Gamma P}}$ - коэффициенты использования машины соответственно по времени и загрузке; $^{q_{\Gamma P}}$ - удельная нагрузка; $^{G_{\Gamma P}}$ - номинальная грузоподъемность базового шасси, т; $^{\upsilon}$ - скорость движения рабочего органа для машин непрерывно го действия, м/с; $^{\upsilon_{\Gamma P},\upsilon_{\Pi},\upsilon_{K}}$ - скорости рабочего органа, передвижения машины и изменения положения ее конструкций для машин периодического действия, м/с; $^{T_{\Gamma P}}$ - время работы машины.

Энергоемкость машины (оборудования) характеризуется удельным расходом энергии, затрачиваемой на переработку единицы материала, и определяется как отношение расхода энергии в кВт к объему материала в т. шт, м переработанного за определенный промежуток времени.

Металлоемкость или материалоемкость машины или установки характеризуется массой материалов, затраченных на ее изготовление в т, отнесенных к производительности машины (установки).

Трудоемкость или количество человеко-часов, затрачиваемых на переработку единицы продукта, определяется как отношение общего обслуживающих количества человек, машину ИЛИ эксплуатационной производительности данной машины или установки. применения рассматривает технические возможности использования машины (устройства) в узкоспециализированных условиях материала и месту его переработки или возможность специального применения универсального ИЛИ И характеризуется транспортабельностью, скоростью перемещения, удельным давлением и т. п.

Для оценки совершенства рабочего цикла машин для земляных работ, комбинированных дорожных машин для борьбы со снегом и наледью, машин для ямочного и капитального ремонта дорог используется параметр — сила резания. Для различных по назначению машин в зависимости для определения силы резания входят как параметры рабочего оборудования, так и параметры преобразуемой среды.

Некоторые основные зависимости для определения параметров машин, согласно [1, 2] приведены в нижеследующей таблице 4.1.

Таблица 4.1.

Машина (установка)	Параметр	Зависимость
1	2	3
Асфальто- смесительная установка	Часовая производительность: периодического действия -*- непрерывного действия	$\Pi_{\Pi.\mathcal{A}.} = \frac{0,06 \cdot Q_{_{3AM}} \cdot k_{_{B}}}{t_{_{3A2}} + t_{_{nep}}^{\cdot} + t_{_{6b2}}^{\cdot}},$ где $Q_{_{3AM}}$ - масса одного замеса, $k_{_{B}}$ -коэффициент использования времени смены, $t_{_{3A2}}$ -время загрузки смесителя компонентами смеси, $t_{_{nep}}$ -время перемещивания ($t_{_{nep}} = 0,00830,0208$ ч), $t_{_{6b2}}$ -время выгрузки готовой смеси $\Pi_{H.\mathcal{A}.} = \frac{0,06 \cdot Q_{_{CM}} \cdot k_{_{B}}}{t_{_{nep}}^{\circ}},$ где $Q_{_{CM}}$ -масса смеси, помещающейся в смесителе, $t_{_{B}}$ -коэффициент использования времени смены, $t_{_{nae}}^{\circ}$ -продолжительность перемешивания ($t_{_{nae}}^{\circ} = 0,0250,05$ ч)

Битумо- хранилище	Производи- тельность (подачи) шестерен- чатого насоса для битума	$\Pi_{\text{Ш.Н.}} = Z \cdot \left[\frac{D_{\text{НАР}}}{Z+2} \right]^2 \cdot b_{\text{ишр}} \cdot n \cdot \eta_{o6}$, где z-число зубьев шестерни (z=8,10,12), D _{НАР} -диаметр шестерен по вершинам зубьев, b _{шир} - ширина шестерен, n-частота вращения шестерен мин ⁻¹ , η_{o6} -объемный КПД насоса (при температуре битума до 95°C η_{o6} =0,7, свыше 130°C - η_{o6} =0,9)	
Профилиров- щик бетонных покрытий дорог	Теорети- ческая производи- тельность	$\Pi = 3600BK_B\nu_H$, где B - ширина обрабатываемой полосы за один проход профилировщика, м; K_B - коэффициент использования рабочего времени; ν_H - скорость, м/ч	
Асфальто- укладчик	Теорети- ческая производи- тельность	$\Pi = B_C h_C v_y \rho_y K_B$, где B_C - ширина укладываемого слоя, м; h_C - толщина укладываемого слоя, м; v_Y - скорость укладки, м/ч; ρ_Y - насыпная плотность уплотненного материала, т/м 3 ; K_B - коэффициент использования рабочего времени.	
Одноковшовы й колесный фронтальный ковшовый погрузчик	Номинальная грузоподъем- ность Напорное	$Q_H = 0.5 \frac{(P - G_0) x_T - G_0 b_0}{(a_T + x_T)},$ где $(P - G_0)$ - конструктивный вес погрузочного оборудования; x_T - продольная координата центра тяжести базового трактора; a_T , b_0 - горизонтальные координаты центров тяжести груза в ковше и оборудования $T_H = \frac{270 N_{e \max}}{v_p (1 - \delta_p)} \eta_T - G_n f$ где $N_{e \max}$ - эффективная мощность	
	усилие по двигателю	двигателя; V_p - рабочая скорость; $^{\eta_T}$ - КПД трансмиссии, для механической трансмиссии 0,85-0,88; f - коэффициент сопротивления качению	

		2
		$0,03-0,04;^{\delta_p}$ - расчетное буксование $0,2$
	Суммарная сила резания	$P = P_{cs} + P_{\delta o \kappa} + P_{\delta o \kappa . cp.} = p_{cs} F_{cs} + p_{\delta o \kappa} F_{\delta o \kappa} + p_{\delta o \kappa . cp.} F_{\delta o \kappa . cp.}$, где $P_{cs} = p_{cs} F_{cs}$ - сила для преодоления лобового сопротивления ножу $P_{\delta o \kappa} = p_{\delta o \kappa} F_{\delta o \kappa}$ - сила разрешения грунта в боковых расширениях прорези $P_{\delta o \kappa . cp.} = p_{\delta o \kappa . cp.} F_{\delta o \kappa . cp.}$ - сила бокового разрушения грунта
	ческая объемная производи- тельность	Π =1000 $B_cH_c\nu_{\Pi\Pi}$, где B_c — ширина захвата, м; H_c — высота срезаемого пласта, м; $\nu_{\Pi\Pi}$ — рабочая скорость машины.
Плужный снего- очиститель	Необходимое число машин для патрульной очистки	$N=\frac{2*L*n}{V*K_u*t_n}$, где L - длина обслуживаемой автомобильной дороги, км; n - число проходов снегоочистителей, необходимое для полной уборки снега с половины ширины дорожного полотна, $n=3$; V - рабочая скорость снегоочистителя, $V=3040$ км/ч; K_u - коэффициент использования машины в течение смены, $K_u=0.7$; t_n - время между проходами снегоочистителей, $t_n=5$ ч.
Машина поливо- моечная	Эксплуата- ционная производи- тельность	$\Pi_{3}=3600\cdot V\cdot K_{H}\cdot \rho_{B}\cdot K_{B}/q_{B}T$, где V - полезная вместимость цистерны, M^{3} ; K_{H} - коэффициент наполнения цистерны; K_{B} - коэффициент использования рабочего времени; P_{B} - плотность жидкости, кг/ M^{3} ; Q_{B} - норма расхода воды, кг/ M^{2} ; T – цикл разлива цистерны, с
Роторный снего- очиститель	Техническая производи- тельность	$\Pi_{T} = 3{,}6BHv_{M}\rho_{CH},$ где B — ширина захвата, м; H — высота срезаемого пласта, м; v_{M} — рабочая скорость машины; ρ_{CH} — плотность снежной массы.
Уплотняющая машина (каток)	Эксплуата- ционная производи-	$\Pi \mathcal{G} = \frac{L(B-a)h_0k}{\left(\frac{L}{v} + t\right) \cdot n},$

тельность	где L – длина уплотняемого слоя, м; B – ширина полосы, м; $a\approx 0,2$ м – величина перекрытия, м; h_0 – оптимальная толщина слоя, м; k – коэффициент использования
	рабочего времени; у – рабочая скорость
	машины; t – время на разворот; n –
	необходимое число проходов.

На основе предлагаемых зависимостей для определения параметров машин и оборудования рекомендуется проводить предварительные расчеты для пояснительной записки. Дальнейшую разработку машины — темы индивидуального задания студент проводит самостоятельно по найденным в информационных источниках методикам определения параметров машин. Рекомендуется также проводить проверочные расчеты машин (прочность, устойчивость и т.д.). Список рекомендуемой литературы и информационных источников приведен ниже.

ЛИТЕРАТУРА

- 1. Машиностроение. Энциклопедия. Т. IV-9.Строительные, дорожные и коммунальные машины. Оборудование для производства строительных материалов. /Под общ. ред. И. П. Ксеневича. М.: Машиностроение, 2005. 736с.
- 2. Дорожно-строительные машины и комплексы /Под ред. В. Н. Баловнева. Омск: Изд-во СибАДИ, 2001. 528 с.
- 3. Баловнев В. И. Дорожно-строительные машины с рабочими органами интенсифицирующего действия. М.: Машиностроение, 1981.-223 с.
- 4. Справочник конструктора дорожных машин. /Под ред. И.П. Бородачева М., Машиностроение, 1973. 504 с.
- 5. Строительные и дорожные машины: Атлас конструкций»/ Л.А.Гоберман, К.В.Степанян. М.: Машиностроение, 1985. 96с.
- 6. Дорожные машины: Атлас конструкций»/ В.И.Баловнев и др.-М.: Машиностроение, 1969.-152с
- 7. Дорожные машины. Теория, конструкция и расчет. /Под ред. Н.Я. Хархута. Л.: Машиностроение, 1976.- 387 с.
 - 8. Спецтехника. Ежегодник. М.: изд-во «Третий Рим», 2005, 2006 гг.
 - 9. <u>www.cdminfo.ru</u> электронная версия ежегодного каталога.
- 10. <u>www.mrmz.ru</u> сайт Михневского ремонтно-механического завода.

Учебное издание

ПРОЕКТИРОВАНИЕ МАШИН И ОБОРУДОВАНИЯ ДЛЯ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ, СТИХИЙНЫХ БЕДСТВИЙ, ТУШЕНИЯ ПОЖАРОВ

Методические рекомендации по выполнению курсовых проектов

Составители ШАРУХА Александр Викторович КОСТЫРЧЕНКО Виктор Анатольевич

В авторской редакции

Подписано в печать	Формат 60х90 1	/16. Печ. л.
Тираж 25 экз.	Заказ № .	

Библиотечно-издательский комплекс федерального государственного бюджетного образовательного учреждения высшего образования «Тюменский индустриальный университет». 625000, Тюмень, ул. Володарского, 38.

Типография библиотечно-издательского комплекса. 625039, Тюмень, ул. Киевская, 52.