Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Клочков Юрий Сергеевич

Должность: и.о. ректора

Дата подпи**МИННИСТЕРСТВО** НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный программный ключ:

Федеральное государственное бюджетное

4e7c4ea90328ec8e65c5d8058549a2538674996вательное учреждение высшего образования

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

Председатель КСН

Н.С. Захаров

2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины: Численное моделирование физических полей

специальность: 23.05.01 Наземные транспортно-технологические

средства

специализация: Автомобильная техника в транспортных технологиях

форма обучения: очная

Рабочая программа разработана в соответствии с утвержденным учебным планом от 30.08.2021 г. и требованиями ОПОП специальности 23.05.01 Наземные транспортно-технологические средства специализация Автомобильная техника в транспортных технологиях к результатам освоения дисциплины «Численное моделирование физических полей»

Рабочая программа рассмотрена
на заседании кафедры физики, методов контроля и диагностики
Протокол № / от « 3/ » О8 2021 г.
И.о. заведующего кафедрой К.Р. Муратов
СОГЛАСОВАНО:
Руководитель образовательной программы () Т.М. Мадьяров
« <u>?/</u> » <u>0 в</u> 2021 г.
Рабочую программу разработал:
К.Р. Муратов, доцент, к.т.н.

1. Цели и задачи освоения дисциплины/модуля

Цель дисциплины: развить компетенции численного моделирования физических полей. Задачи дисциплины:

- изучить базовые дифференциальные и интегральные уравнения, лежащие в основе описания электрических, магнитных, электромагнитных, тепловых и упругих полей;
- изучить и освоить основы методов конечных элементов и конечных разностей;
- овладеть методами разложения дифференциальных уравнений в вычислительный алгоритм
- освоить программные среды численного моделирования физических полей.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина относится к дисциплинам общеуниверситетского блока элективных дисциплин по тематике "Цифровая инженерия" обязательной части учебного плана.

Необходимыми условиями для освоения дисциплины являются:

знание основ теории упругости, термодинамики и электродинамики, интегрального и дифференциального исчисления, принципов работы вычислительных алгоритмов.

умения оперировать физическими законами, решать простые интегральные и дифференциальные уравнения

владение навыками работы с компьютерными программами численного моделирования, методами анализа полученных результатов и их представления.

Содержание дисциплины является логическим продолжением содержания дисциплин физика, теоретическая механика, математика, цифровая культура и служит основой для освоения дисциплин Проектная деятельность, Системы искусственного интеллекта.

3. Результаты обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Таблица 3.1

		таолица 5.1		
Код и наименование компетенции	Код и наименование индикаторов достижения компетенций	Результаты обучения по дисциплине (модулю)		
УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.2 Определяет и оценивает практические последствия возможных решений задачи.	Знать: 31 основы численных методов моделирования поля и их виды Уметь: У1 выполнять преобразование дифференциальных уравнений, описывающих физическое поле, в разностные соотношения для построения последующих алгоритмов Владеть: В1 навыками построения блок-схем алгоритмов расчета физических полей		
УК-2 Способен управлять проектом на всех этапах его жизненного цикла	УК-2.1. Формулирует в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение. Определяет ожидаемые результаты решения выделенных задач.	Знать: 32 принципы формирования модели задачи и корректного задания начальных и граничных условий Уметь: У2 формировать модель в программной среде численного моделирования, в том числе систему взаимосвязанных моделей Владеть: В2 навыками построения численной модели физического поля, представления и анализа результатов, способами верификации результатов		

4. Объем дисциплины

Общий объем дисциплины составляет 3 зачетных единиц, 108 часов.

Таблица 4.1.

Форма обучения	Курс/	Аудиторн	ные занятия/контак	тная работа, час.	Сомоотодтоницая	Форма	
		Лекции	Практические	Лабораторные	Самостоятельная работа, час.	промежуточной	
	обучения	семестр	лекции	занятия	занятия	paoora, rac.	аттестации
	очная	2/4	16	0	32	60	зачет

5. Структура и содержание дисциплины

5.1. Структура дисциплины.

очная форма обучения (ОФО)

Таблица 5.1.1

									тиолици с.т.т	
No॒	Структура дисциплины		Аудиторные занятия, час.		CPC,	Всего,	V ИШV	Опанонни и спанотра		
п/п	Номер раздела	Наименование раздела	Л.	Пр.	Лаб.	час.	час.	Код ИДК	Оценочные средства	
1	1	Введение	1	-	-	2	3	УК-1.2	Реферат	
2	2	Элементы теории поля	2	-	2	5	9	УК-1.2	Типовой расчет, тест	
3	3	Уравнения теории упругости	2	-	2	5	9	УК-1.2	Тест	
4	4	Уравнения Максвелла в интегральном и дифференциальном виде	2	-	2	5	9	УК-1.2	Тест	
5	5	Теплоперенос	2	-	2	5	9	УК-1.2	Тест	
6	6	Численные методы	4	-	6	15	25	УК-1.2 УК-2.1	Отчет по лабораторной работе	
7	7	Моделирование 7 физических полей в программе Elcut		-	18	18	38	УК-2.1	Отчет по лабораторной работе	
8	8 Альтернативные программные пакеты		1	-	-	5	6	УК-2.1	Реферат	
	Зачет/экзамен			-	-	00	00		-	
		Итого:	16	-	32	60	108		-	

заочная форма обучения (ЗФО) не реализуется

очно-заочная форма обучения (ОЗФО) не реализуется

- 5.2. Содержание дисциплины/модуля.
- 5.2.1. Содержание разделов дисциплины/модуля (дидактические единицы).

Раздел 1. «Введение». Роль и место моделирования физических процессов в проектировании изделий и процессов в производстве.

Раздел 2. «Элементы теории поля». Понятие поля как математического объекта. Скалярное поле. Векторное поле. Тензорное поле. Поверхностные интегралы. Операторы Гамильтона и Лапласа. Градиент, ротор, дивергенция. Циркуляция векторного поля, формула Стокса. Поток векторного поля,

формула Остроградского-Гаусса. Частные случаи вырождения трехмерной модели в плоскую или осесимметричную.

Раздел 3. «*Уравнения теории упругости*». Тензоры деформаций и напряжений. Закон Гука. Модуль Юнга, модуль сдвига, коэффициент Пуассона, параметры Ламе.

Раздел 4. «Уравнения Максвелла в интегральном и дифференциальном виде». Физические величины, описывающие электромагнитное поле. Теоремы о циркуляции и Остроградского-Гаусса для электрического и магнитного полей. Материальные уравнения. Электростатическое взаимодействие, магнитостатическое взаимодействие, закон Ома, электромагнитная индукция и ток смещения в структуре уравнений Максвелла.

Раздел 5. «*Теплоперенос*». Температурное поле. Уравнение теплового баланса. Градиент температуры, тепловой поток. Закон Фурье. Коэффициент теплопроводности. Дифференциальное уравнение теплопроводности. Теплоемкость, температуропроводность.

Раздел 6. «Численные методы». Основные сведения о методах конечных элементов, разностей и объемов. Сетки и сеточные функции. Граничные и начальные условия. Методы аппроксимации операторов. Полиномиальная аппроксимация и интерполяция. Сходимость и устойчивость алгоритма. Граничные и начальные условия. Верификация результатов численного моделирования.

Раздел 7. «Моделирование физических полей в программе Elcut». Интерфейс программы Elcut. Обзор основных типов задач. Описание задачи. Структура базы данных задачи. Создание задачи. Описание геометрии задачи. Создание геометрической модели. Привязка меток к геометрическим объектам. Дискретизация области. Обмен данными с другими программами. Ввод параметров задачи. Ввод свойств материалов и граничных условий. Ввод свойств метки. Схемы электрических цепей. Анализ результатов решения. Формирование картины поля на экране. Локальный и интегральный калькулятор. Анализ присоединенной электрической цепи. Мастер вычисления параметров. Вывод результатов расчета поля. Надстройки. LabelMover. Гармонический анализ. Импорт эскизов SolidWorks. Вычисление частичных емкостей. Программирование надстроек. Решение мультифизических задач и задач оптимизации.

Раздел 8. «Альтернативные программные пакеты моделирования физических задач». Ansys, COMSOL Multiphysics, Solidworks Simulation, OPERA, CST Studio Suite, JMag, Altair Flux, Simcenter MAGNET. Решаемые задачи. Сравнение.

5.2.2. Содержание дисциплины/модуля по видам учебных занятий.

Лекционные занятия

Таблица 5.2.1

	1 4031111Qt 2.2.1							
	Номер		Объем, час.					
№ п/п	раздела дисципл ины	ОФО	3ФО бак/спец	ОЗФО	Тема лекции			
1	1, 8	2	-	-	Роль и место моделирования физических процессов в проектировании изделий и процессов в производстве Ansys, COMSOL Multiphysics, Solidworks Simulation, OPERA, CST Studio Suite, JMag, Altair Flux, Simcenter MAGNET. Решаемые задачи. Сравнение.			
2	2	2	-	-	Понятие поля как математического объекта. Скалярное поле. Векторное поле. Тензорное поле. Поверхностные интегралы. Операторы Гамильтона и Лапласа. Градиент, ротор, дивергенция. Циркуляция векторного поля, формула Стокса. Поток векторного поля, формула Остроградского-Гаусса. Частные случаи вырождения трехмерной модели в плоскую или осесимметричную.			
3	3	2	-	-	Тензоры деформаций и напряжений. Закон Гука. Модуль Юнга, модуль сдвига, коэффициент Пуассона, параметры Ламе.			

4 4 2 - о циркуляции магнитного п взаимодействи	пичины, описывающие электромагнитное поле. Теоремы и Остроградского-Гаусса для электрического и олей. Материальные уравнения. Электростатическое е, магнитостатическое взаимодействие, закон Ома, ная индукция и ток смещения в структуре уравнений			
5 5 2 - температуры, теплопроводно	поле. Уравнение теплового баланса. Градиент тепловой поток. Закон Фурье. Коэффициент сти. Дифференциальное уравнение теплопроводности. температуропроводность.			
объемов. Сетки	дения о методах конечных элементов, разностей и и сеточные функции. Граничные и начальные условия. ксимации операторов. Полиномиальная аппроксимация и			
	Сходимость и устойчивость алгоритма. Граничные и начальные условия. Верификация результатов численного моделирования.			
задачи. Структ геометрии зада геометрии зада геометрический другими прог материалов и электрических картины поля Анализ присо параметров. Вы Гармонический частичных е	ограммы Elcut. Обзор основных типов задач. Описание тура базы данных задачи. Создание задачи. Описание чи. Создание геометрической модели. Привязка меток к м объектам. Дискретизация области. Обмен данными с раммами. Ввод параметров задачи. Ввод свойств граничных условий. Ввод свойств метки. Схемы цепей. Анализ результатов решения. Формирование на экране. Локальный и интегральный калькулятор. единенной электрической цепи. Мастер вычисления ввод результатов расчета поля. Надстройки. LabelMover. а анализ. Импорт эскизов SolidWorks. Вычисление мкостей. Программирование надстроек. Решение ких задач и задач оптимизации.			
Итого: 16	- 17 11 - 17 11 11 11 11 11 11 11 11 11 11 11 11			

Практические занятия

«Практические занятия учебным планом не предусмотрены»

Лабораторные работы

Таблица 5.2.2

					Таолица 5.2.2			
No	Номер	(Объем, час.					
п/п	раздела	ОФО	ЗФО	ОЗФО	Наименование лабораторной работы			
11/11	дисциплины	040			2			
1	2	2	-	-	Элементы теории поля			
2	3	2	-	-	Уравнения теории упругости			
3	4	2	-	-	Уравнения Максвелла			
4	5	2	-	-	Уравнения теплопереноса			
5	6	6	-	-	Составление численных алгоритмов расчета интегральных			
3	U	U			выражений			
6	7	2	-	-	Изучение интерфейса программы Elcut			
7	7	2	-	-	Распределение упругих напряжений тела простой формы			
8	7	2	-	-	Конденсатор переменной емкости			
9	7	2	-	-	Распределение электрического тока в проводнике			
10	7	2	-	-	Расчет магнитного поля постоянных, гармонических и			
10	/				нестационарных токов			
11	7	2	-	-	Расчет теплового поля тела простой формы			
12	7	2	-	-	Нагрев цилиндра и механические напряжения			
13	7	4	-	_	Защита отчетов			
	Итого:	32	-	-				

Самостоятельная работа студента

Таблица 5.2.3

						,
№ п/п	Номер раздела дисциплины	Объем, час. ОФО 3ФО ОЗФО			Тема	Вид СРС
1	1	2	-	-	Роль и место численных методов в науке и технике (по областям)	Написание реферата
2	2	3	-	-	Решение задач по теории поля	Выполнение типового расчета
3	2	2	-	-	Тест «Теория поля»	Тестирование
4	3	5	-	-	Уравнения теории упругости	Подготовка к тестированию/ Тестирование
5	4	5	-	-	Уравнения Максвелла	Подготовка к тестированию/ Те
6	5	5	-	-	Уравнения теплопереноса	Подготовка к тестированию/ Те
7	6	5	-	-	Составление численных	Подготовка к лабораторной работе
8	6	10	-	-	алгоритмов расчета интегральных выражений	Оформление отчета по лабораторной работе
9	7	6	-	-	Моделирование физических	Подготовка к лабораторным работам
10	7	12	-	-	полей в программе Elcut	Оформление отчета по лабораторным работам
11	8	5	-	-	Пакеты численного моделирования физических полей	Написание реферата
Итого:		60	-	-		

- 5.2.3. Преподавание дисциплины ведется с применением следующих видов образовательных технологий:
- визуализация учебного материала в Power Point в диалоговом режиме (лекционные занятия);
 - практическая работа в малых группах (лабораторные работы).

6. Тематика курсовых работ/проектов

Курсовые работы/проекты учебным планом не предусмотрены

7. Контрольные работы

Контрольные работы не предусмотрены учебным планом

8. Оценка результатов освоения дисциплины/модуля

8.1. Критерии оценивания степени полноты и качества освоения компетенций в соответствии с планируемыми результатами обучения приведены в Приложении 1.

8.2. Рейтинговая система оценивания степени полноты и качества освоения компетенций обучающихся очной формы обучения представлена в таблице 8.1.

Таблица 8.1

		Таолица о.1					
№ п/п	Виды мероприятий в рамках текущего контроля	Количество баллов					
	1 more rived a compositive of	Оаллов					
1	1 текущая аттестация	5					
1	Реферат «Роль и место численных методов в науке и технике»	5					
2	Выполнение типового расчета «Теория поля»	5					
3	Тест «Теория поля»	5 5					
4	Тест «Уравнения теории упругости»						
	ИТОГО за первую текущую аттестацию	20					
	2 текущая аттестация						
5	Тест «Уравнения Максвелла»	5					
6	Тест «Уравнения теплопроводности»	5					
7	Выполнение и защита лабораторной работы «Численные алгоритмы						
	расчета интегральных выражений»	10					
8	Реферат «Пакеты программ численного моделирования»	5					
	ИТОГО за вторую текущую аттестацию	25					
	3 текущая аттестация						
9	Выполнение и защита лабораторной работы «Интерфейс Elcut»	5					
10	Выполнение и защита лабораторной работы «Распределение упругих	5					
10	напряжений тела простой формы»						
11	Выполнение и защита лабораторной работы «Конденсатор переменной	10					
11	емкости»	10					
12	Выполнение и защита лабораторной работы «Распределение	5					
12	электрического тока в проводнике»	3					
13	Выполнение и защита лабораторной работы «Расчет магнитного поля	10					
13	постоянных, гармонических и нестационарных токов»	10					
1.4	Выполнение и защита лабораторной работы «Расчет теплового поля тела	5					
14	простой формы»	3					
1.5	Выполнение и защита лабораторной работы «Нагрев цилиндра и	1.5					
15	механические напряжения»	15					
	ИТОГО за третью текущую аттестацию	55					
	ВСЕГО	100					

9. Учебно-методическое и информационное обеспечение дисциплины/модуля

- 9.1. Перечень рекомендуемой литературы представлен в Приложении 2.
- 9.2. Современные профессиональные базы данных и информационные справочные системы.
- Собственная полнотекстовая база (ПБД) БИК ТИУ http://elib.tyuiu.ru/
- Научно-техническая библиотеки ФГБОУ ВО РГУ Нефти и газа (НИУ) им. И.М. Губкина http://elib.gubkin.ru/
- Научно-техническая библиотека ФГБОУ ВПО УГНТУ http://bibl.rusoil.net
- Научно-техническая библиотека ФГБОУ ВПО «Ухтинский государственный технический университет» http://lib.ugtu.net/books
- База данных Консультант «Электронная библиотека технического ВУЗа»
- Электронно-библиотечная система IPRbookshttp://www.iprbookshop.ru/
- OOO «Издательство ЛАНЬ» http://e.lanbook.com
- OOO «Электронное издательство ЮРАЙТ» www.biblio-online.ru»
- Электронно-библиотечная система elibraryhttp://elibrary.ru/

- Электронно-библиотечная система BOOK.ru https://www.book.ru
- 9.3. Лицензионное и свободно распространяемое программное обеспечение, в т.ч. отечественного производства

MicrosoftWindows;

MicrosoftOfficeProfessional

ELCUT Профессиональный (1 лицензия на 10 рабочих мест)

ANSYS

MathCad

10. Материально-техническое обеспечение дисциплины/модуля

Помещения для проведения всех видов работы, предусмотренных учебным планом, укомплектованы необходимым оборудованием и техническими средствами обучения.

Таблица 10.1

№ п/п	Перечень оборудования, необходимого для освоения дисциплины	Перечень технических средств обучения, необходимых для освоения дисциплины (демонстрационное оборудование)		
1	Учебная аудитория для проведения за проектирования (выполнения курсовых консультаций; текущего контрол г. Тюмень, ул. 50 лет О Учебная мебель: столы, стулья, доска	г работ); групповых и индивидуальных пя и промежуточной аттестации Октября, д. 38, ауд. 332 Компьютер в комплекте-1шт., экран,		
2	меловая. Учебная аудитория для проведения занятий о Учебная лаборатория физических м г. Тюмень, ул. 50 лет О	методов неразрушающего контроля		
2	Учебная мебель: столы ученические, компьютерные столы, маркерная доска	Компьютер в комплекте -11 шт, проектор экран, телевизор LG, документ-камера, Проектор Epson EB-95		

11. Методические указания по организации СРС

- 11.1. Методические указания по подготовке к практическим, лабораторным занятиям. Численное моделирование физических полей. Методические указания для выполнения лабораторных работ.
- 11.2. Методические указания по организации самостоятельной работы. Численное моделирование физических полей. Методические указания для самостоятельной работы.

Планируемые результаты обучения для формирования компетенции и критерии их оценивания

Дисциплина Численное моделирование физических полей

Код, специальность: 23.05.01 Наземные транспортно-технологические средства

Специализация: Автомобильная техника в транспортных технологиях

Код	Код, наименование	Код и наименование результата обучения по	Критерии оценивания результатов обучения					
компетенции	наименование ИДК	дисциплине (модулю)	1-2	3	4	5		
УК-1.	УК-1.2. Определяет и оценивает практические последствия возможных решений задачи.	Знать: 31 основы численных методов моделирования поля и их виды	Не может назвать математические и физические основания, лежащие в основе численных методов	Частично знает основы численных методов моделирования поля и их виды	Знает базовые основы численных методов моделирования полей	Свободно ориентируется в численных методах, может перечислить и пояснить их сущность		
Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода,		Уметь: У1 выполнять преобразование дифференциальных уравнений, описывающих физическое поле, в разностные соотношения для построения последующих алгоритмов	Не умеет преобразовать дифференциальные уравнения в разностные соотношения	Может выполнить преобразования простейшие преобразования дифференциальных уравнений в разностные соотношения	Выполняет базовые преобразования дифференциальных уравнений в разностные соотношения	Выполняет преобразование дифференциальных уравнений в разностные соотношения. Может предложить варианты		
подхода, вырабатывать стратегию действий		Владеть: В1 навыками построения блок-схем алгоритмов расчета физических полей	Не имеет навыков построения блок-схем алгоритмов расчета физических полей	Может воспроизвести стандартные блоксхемы алгоритмов	Строит блок-схемы алгоритмов расчета полей.	Строит блок-схемы алгоритмов расчета полей. Может выбрать оптимальный вариант относительно заданных критериев.		

Код	Код,	Код и наименование	Критерии оценивания результатов обучения					
компетенции	наименование ИДК	результата обучения по дисциплине (модулю)	1-2	3	4	5		
УК-2. Способен	УК-2.1. Формулирует в рамках поставленной цели проекта совокупность взаимосвязанных задач, обеспечивающих ее достижение. Определяет ожидаемые результаты решения выделенных задач.	Знать: 32 принципы формирования модели задачи и корректного задания начальных и граничных условий	Не знает принципы формирования модели задачи и корректного задания начальных и граничных условий	Может перечислит принципы формирования модели задачи. Не знает принципы задания начальных и граничных условий	Знает базовые принципы формирования модели задачи и задания начальных и граничных условий	Знает принципы формирования модели задачи и задачи и задания начальных и граничных условий. Может показать важность правильного задания начальных и граничных условий для получения корректного решения		
управлять проектом на всех этапах его жизненного цикла		Уметь: У2 формировать модель в программной среде численного моделирования, в том числе систему взаимосвязанных моделей	Не умеет формировать модель в программной среде	Может сформировать геометрию модели, задать свойства	Формирует модель в программной среде численного моделирования для заданного типа задачи	Свободно формирует модель в программной среде численного моделирования, в том числе систему взаимосвязанных моделей		
		решения	Не владеет навыками построения численной модели физического поля, представления и анализа результатов, способами верификации результатов	Владеет навыками построения простейших моделей физического поля. Не может дать анализ результатов моделирования.	Владеет базовыми навыками построения численной модели физического поля, представления и анализа результатов, способами верификации результатов	Свободно строит численные модели физического поля. Анализирует результаты моделирования и способен выполнить их верификацию		

КАРТА обеспеченности дисциплины учебной и учебно-методической литературой

Дисциплина Численное моделирование физических полей Код, специальность: 23.05.01 Наземные транспортно-технологические средства Специализация: Автомобильная техника в транспортных технологиях

№ п/п	Название учебного, учебно-методического издания, автор, издательство, вид издания, год издания	Количество экземпляров в БИК	Контингент обучающихся, использующих указанную литературу	Обеспеченность обучающихся литературой,	Наличие электронного варианта в ЭБС (+/-)
1	Волков, Е. А. Численные методы: учебное пособие для вузов / Е. А. Волков. — 6-е изд., стер. — Санкт-Петербург: Лань, 2021. — 252 с. — ISBN 978-5-8114-7899-6. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/167179	-	30	100	+
2	Петрищев, И. О. Численные методы: учебно-методическое пособие / И. О. Петрищев, М. Г. Аббязова. — Ульяновск: УлГПУ им. И.Н. Ульянова, 2017. — 60 с. — ISBN 978-5-86045-951-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/112098	-	30	100	+
3	Слабнов, В. Д. Численные методы: учебник / В. Д. Слабнов. — Санкт-Петербург: Лань, 2020. — 392 с. — ISBN 978-5-8114-4549-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/133925	-	30	100	+
4	Дубков, М. В. Моделирование физических процессов в электромагнитных полях: учебное пособие / М. В. Дубков, И. Г. Веснов. — Рязань: РГРТУ, 2019. — 60 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/168312	-	30	100	+
5	Янов, С. И. Уравнения математической физики: учебнометодическое пособие / С. И. Янов. — Барнаул: АлтГПУ, 2019. — 81 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/139183	-	30	100	+
6	Мустейкис, А. И. Численное решение задач теплопроводности: учебное пособие / А. И. Мустейкис, Л. П. Юнаков. — Санкт-Петербург: БГТУ "Военмех" им. Д.Ф. Устинова, 2018. — 41 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/122077	-	30	100	+

7	Андреев, В. К. Математические модели механики сплошных сред: учебное пособие / В. К. Андреев. — Санкт-Петербург: Лань, 2021. — 240 с. — ISBN 978-5-8114-1998-2. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/168854	-	30	100	+
8	Белова, И. М. Теория поля. Математический анализ: учебнометодическое пособие / И. М. Белова, Т. А. Манаенкова, В. М. Кессельман. — Москва: РТУ МИРЭА, 2020. — 68 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/171438	-	30	100	+
9	Охорзин, В. А. Прикладная математика в системе MATHCAD: учебное пособие / В. А. Охорзин. — 3-е изд., стер. — Санкт-Петербург: Лань, 2021. — 352 с. — ISBN 978-5-8114-0814-6. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/167771	-	30	100	+

Руководитель образователь	ной программы	_ Т.М. Мадьяров
«»20	0 г.	
Директор БИК	Д.Х. Каюкова	
«» 20 М.П.) <u> </u>	

.

Дополнения и изменения к рабочей программе дисциплины (модуля)

на	20 20_ учебны	й год	
В рабочую программу вносятся следуют	цие дополнения (изменения):	
			-
			-
			-
			-
			-
Дополнения и изменения внес:			
(должность, ученое звание, степень)	(подпись)	(И.О. Фамилия)	-
Дополнения (изменения) в рабочую про (наименование кафедры) Протокол от «»20г. М	_··	рены и одобрены на заседани	и кафедр
Заведующий кафедрой			
СОГЛАСОВАНО:			
Заведующий выпускающей кафедрой/ Руководить образовательной программы	[И.О. Фамилия	
« » 20 г.			