Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Клочков Юрий Сергеевич

Должность: и.о. ректора

Дата подписания: 08.05.2024 10:23:22

Уникальный программный ключ:

4e7c4ea90328ec8e65c5d8058549a2538d7400d1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт геологии и нефтегазодобычи Кафедра Прикладной геофизики

УТВЕРЖДАЮ:

Председитель СПС
/ Курчикон А.Р./
« СС » СС 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплина Электромагинтные и акустические исследования скважин

направление 21.05.03 Технология геологической разведки специализация: Геофизические методы неследования скважии

квалификация горный инженер-геофизик (специалист)

программа специалитет

форма обучения очная

3/-/курс

семестр 6/4-

Аудиторные занятия 68 / -/ - час., в т.ч.

Лекции - 34 /-/ - час.

Практические занятия - не предусмотрены

Лабораторные занятия - 34/-/- час.

Самостоятельная работа - 76 час./-

Курсовая работа - 6 семестр

Расчётно-графическая работа - не предусмотрена

Контрольная работа - не предусмотрена

Занятия в интерактивной форме - 14 час

Вид промежуточной аттестации:

Экзамен - 6 семестр /-/ -

Общая трудоемкость 144 час. (4 зач. ед.)

При разработке программы в основу положен Федеральный государственный образовательный стандарт (ФГОС) высшего профессионального образования (ВПО) по направлению подготовки 21.05.03 «Технология геологической разведки» (квалификация «горный инженергеофизик»), утвержденного приказом № 1300 Министерства образования и науки Российской Федерации от 17 октября 2016 г.

Рабочая программа рассмотрена на заседании кафедры Прикладиой геофизики

Протокол № 1

«31» августа 2018 г.

Заведующий кафедрой «Прикладная геофизика»

С.К. Туренко

Рабочую программу разработал:

канд. геол-минерал. наук, доцент кафедры «Прикладная геофизика»

BARE B

В. Г. Мамяшев

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт геологии и нефтегазодобычи Кафедра Прикладной геофизики

		УТВЕРЖДАЮ:
	I	Тредседатель СПС
		/ Курчиков А.Р./
‹ ‹	>>	2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплина Электромагнитные и акустические исследования скважин

направление 21.05.03 Технология геологической разведки специализация: Геофизические методы исследования скважин

квалификация горный инженер-геофизик (специалист)

программа специалитет

форма обучения **очная** курс 3 / -/ - семестр 6 / -/ -

Аудиторные занятия 68 / -/ - час., в т.ч.

Лекции – 34 /-/ - час.

Практические занятия – не предусмотрены

Лабораторные занятия — 34/-/- час.

Самостоятельная работа – 76 час./-

Курсовая работа – 6 семестр

Расчётно-графическая работа – не предусмотрена

Контрольная работа – не предусмотрена

Занятия в интерактивной форме – 14 час

Вид промежуточной аттестации:

Экзамен – 6 семестр /-/ -

Общая трудоемкость 144 час. (4 зач. ед.)

При разработке программы в основу положен Федеральный государственный образовательный стандарт (ФГОС) высшего профессионального образования (ВПО) по направлению подготовки 21.05.03 «Технология геологической разведки» (квалификация «горный инженергеофизик»), утвержденного приказом № 1300 Министерства образования и науки Российской Федерации от 17 октября 2016 г.

Рабочая программа рассмотрена на заседании кафедры Прикладной геофизики

Протокол № 1	«31» _августа_ 2018 г.
Заведующий кафедрой «Прикладная геофизика»	С.К. Туренко
Рабочую программу разработал:	
канд. геол-минерал. наук, доцент кафедры «Прикладная геофизика»	В. Г. Мамяшев

Цели и задачи изучения дисциплины

Целью дисциплины «Электромагнитные и акустические исследования скважин» является изучение теоретических и физических основ методов ГИС: - электрических (квазистационарного поля), электромагнитных и акустических, позволяющее грамотно и творчески применять эти методы и развивать их. Изучение физических и теоретических основ соответствующих физических полей включает решение основных задач распространения этих полей в средах, представляющих модели исследуемых объектов: от однородных сред до моделей разрезов скважин, пересекающих геофизические пласты, осложненные зонами проникновения, слоистостью и анизотропией и др. Оно также включает изучения законов физических явлений и процессов, происходящих в скважине и околоскважинном пространстве.

Задачами дисциплины являются ознакомление студентов:

- с физическими и теоретическими основами методов электрометрии и геоакустики скважин, методикой и результатами решения прямых задач геофизических исследований (ГИС) этими методами;
- с закономерностями распространения исследуемых физических полей в системе скважина-пласт;
- с зависимостью показаний методов рассматриваемых методов ГИС от петрофизических характеристик горных пород;
- с геологической и петрофизической информативностью рассматриваемых методов ГИС и основами их интерпретации.

Место дисциплины в структуре ОПОП

Дисциплина «Электромагнитные и акустические исследования скважин» входит в состав базовой (обязательной) части (Б.1 Б.26) учебного плана подготовки специалистов специализации «Геофизические методы исследования скважин».

Изучение дисциплины «Электромагнитные и акустические исследования скважин» опирается на знания, полученные при изучении дисциплин: «Математика», «Физика», «Петрофизика», «Геофизические исследования скважин», «Физика горных пород», на знании теоретических основ физических полей.

Требования к результатам освоения дисциплины Процесс изучения дисциплины направлен на формирование следующих компетенций:

Номер	Содержание компетен-	В результате изучения дисциплины обучающиеся должны 1)		
/индекс	ции или ее части	знать	уметь	владеть
компе-				
тенций				
1	2	3	4	5
OK-3	готовность к самораз-	личностные воз-	объективно оцени-	основами соци-
	витию, самореализа-	можности и огра-	вать уровень своей	альной ориента-
	ции, использованию	ничения, профес-	квалификации, иметь	ции в современ-
	творческого потенциа-	сиональные	мотивацию к форми-	ной общественной
	ла	функции в обла-	рованию своего	формации
		сти ГИС,	профессионального	
			статуса и необходи-	
			мость его повышения	
ОК-7	способность к самоор-	возможности, це-	использовать свои	методами и навы-
	ганизации и самообра-	ли, методы и сред-	возможности в ре-	ками саморазвития
	зованию	ства повышения	альных жизненных	и повышения про-

		своего социального статуса	ситуациях	фессиональной квалификации
ОПК- 4	способность организовать свой труд на научной основе, самостоятельно оценивать результаты своей профессиональной деятельности, владение навыками самостоятельной работы, в т.ч. в сфере проведения научных исследований	уровень органи-	применять достижения научных исследований в своей деятельности, выбирать готовый и разрабатывать новый алгоритм решения поставленных задач	навыками организации труда на научной основе, навыками самостоятельной работы, в том числе в сфере проведения научных исследований
ОПК- 5	понимание значимости своей будущей специальности, ответственным отношением к своей трудовой деятельности	сущность и значение своей профессии в развитии общества	использовать мотивацию к выполнению профессиональной деятельности	профессиональ- ными знаниями
ОПК-6	самостоятельное принятие решения в рамках своей профессиональной компетенции, готовностью работать над междисциплинарными проектами	профессиональные компетенции: информационно-технологические, проектно-конструкторские, организационно-управленческие, научноисследовательские, правовые и маркетинговые	компетенций	междисциплинарными знаниями в областях близких геологии, математике, физике, информатики и др.
ПК-1	умение и наличие профессиональной потребности отслеживать тенденции и направления развития эффективных технологий геологической разведки, проявлением профессионального интереса к развитию смежных областей	сущность и значение своей профессии в развитии общества, тенденции и направления развития эффективных технологий геологической разведки	использовать мотивацию к выполнению профессиональной деятельности в соответствии с новыми тенденциями и направлениями развития эффективных технологий геологической разведки	знаниями в новых областях, непосредственно не связанных со сферой деятельности, информационными технологиями
ПК-2	умение на всех стадиях геологической разведки (планирование, проектирование, экспертная оценка, производство, управление) выявлять производ-	организацию процессов техно- логии геолого- разведки	применять приобретенные знания в практической инженерно- управленческой деятельности предприятия	и приема опти- мальных решений для обеспечения

ПК-3	ственные процессы и отдельные операции, первоочередное совершенствование технологии которых обеспечит максимальную эффективность деятельности предприятия умение разрабатывать технологические процессы геологоразведочных работ и корректировать эти процессы в зависимости от поставленных геологических и технологических задач в изменяющихся горногеологических	основы разработ- ки и управления технологически- ми процессами	разрабатывать и корректировать технологические процессы в зависимости от поставленных геологических задач в изменяющихся горногеологических и технических условиях.	навыками профессиональной деятельности и управления технологическими процессами
ПК-5	выполнение разделов проектов и контроль за их выполнением по технологии геологоразведочных работ в соответствии с современными требованиями промышленности	нормативные до- кументы и требо- вания к проектно- сметной доку- ментации	составлять разделы в проектах геологической разведки в соответствии с современными требованиями	навыками выполнения разделов в проектах на проведение геологоразведочных и других геофизических работ в соответствии с требованиями

1	2	3	4	5
ПК-7	способность разраба-	нормативные до-	составлять проекты	основными прин-
	тывать производствен-	кументы и требо-	геологоразведочных	ципами организа-
	ные проекты для про-	вания к проектно-	работ, проводить	ции геологоразве-
	ведения геологоразве-	сметной доку-	расчеты стоимостей	дочных работ
	дочных работ	ментации	работ и трудозатрат	
ПК-8	прогнозирование по-	*	прогнозировать и ис-	современными
	требностей в высоких	нологии составле-	пользовать совре-	высокотехноло-
	технологиях для более	ния технических	менные технологии	гичными метода-
	профессионального	проектов на прове-	для проектирования	ми и технология-
	составления техниче-		геологоразведочных	ми проектирова-
	ских проектов на гео-	ской разведки, ви-	работ	R ИН
	логическую разведку	ды, способы и тех-		
		нологии ведения		
		геологоразведоч-		
		ных работ		
ПК-9				

TTC				
ПК-				
15				
ПК-				
17				
ПК-				
22				
ПОК		1		
ПСК-	уметь применять знания	-	применять знания о	современными ме-
2.2	о современных методах	1 1	современных методах	
	геофизических исследо-	-	геофизических иссле-	-
	ваний.	и основы их тео-	дований, выбирать оп-	
		рии, современные	тимальный комплекс	-
		методы геофизи-	исследований	го-геофизических
		ческих исследо-		условиях
		ваний, современ-		
		ные методы гео-		
		физических ис-		
		следований		
ПСК-			планировать и прово-	
2.3	<u> </u>		дить геофизические	-
	научные исследования		3	геофизических ис-
	оценивать их результа-	-		
	ты.	и геофизических	9	ки их результатов
		исследований в це-		
		ЛОМ		
ПСК-	умение профессиональ-	технические, мет-	эксплуатировать гео-	-
2.4	но эксплуатировать со-	*	1 3	
	временное геофизиче-	эксплуатационные	вание, средства изме-	ского оборудова-
	ское оборудование, орг-	характеристики	рения, оргтехнику	ния, оргтехники и
	технику и средства из-	-		средств измерения
	мерения.	оборудования,		
		средств измерений		
		и оргтехники		
ПСК-	умение разрабатываты	комплексы геофи-	разрабатывать ком-	навыками состав-
2.5	комплексы геофизиче-	зических исследо-	плексы геофизических	ления технических
	ских исследований и ме-	ваний и методики	исследований и мето-	заданий, способами
	тодики их применения в	их применения	дики их применения в	оценки техноло-
	зависимости от изменя-		зависимости от изме-	гичности геологи-
	ющихся геолого-	ния на разработку	няющихся геолого-	ческой разведки
	технических условий и		технических условий и	способами кон-
	поставленных задач		поставленных задач	троля за проведе-
	изучения разрезов сква-		изучения разрезон	нием геофизиче-
	жин и контроля разра-		скважин и контроля	ских работ и их ка-
	ботки.		разработки	чеством

ПСК-	умение выполнять про-	аппаратуру и тех-	выполнять проверку	техническими и
2.6	верку, калибровку, нас-	нику, применяе-	калибровку, настройку	программными
	тройку и эксплуатацию	мую в геофизике	и эксплуатацию гео-	средствами для вы-
	геофизической техники	технические и мет-	физической аппарату-	полнения проверки
	в различных геолого-	рологические ха-	ры и техники в раз-	калибровки,
	технических условиях.	рактеристики, пра-	личных геолого-	настройки и экс-
		вила и методы	технических условиях	плуатации геофи-
		наладки, настройки		зической техники в
		и эксплуатации		различных геолого-
		приборов и систем		технических усло-
		для решения задач		виях, умением ве-
		ГИС		сти необходимую
				документацию

Содержание дисциплины Содержание разделов и тем дисциплины

$N_{\underline{0}}$	Наименования раз-	Содержание раздела дисциплины	
$N_{\underline{0}}$	делов дисциплины		
1.	Введение в дисциплину. Цели и задачи дисциплины, связь её со смежными дисциплинами.	Место ГИС в информационном обеспечении поисков, разведки и разработки месторождений нефти и газа и в их развитии. История развития теоретических основ и методов электрометрии и геоакустики, вклад отечественных ученых и специалистов. Место электрических, электромагнитных и акустических методов в комплексе ГИС и в информационном обеспечении геологоразведочных работ и разработки месторождений нефти и газа.	
2.	Основные электрические свойства и петрофизические параметры пород.	Основные электрические свойства пород: удельное электрическое сопротивление (УЭС) и проводимость (УЭП), виды проводимости, диэлектрическая и магнитная проницаемость, диффузионно-адсорбционная активность, вызванная электрохимическая активность и краткая характеристика их. Волновое число, токи проводимости и смещения. Удельное электрическое сопротивление (УЭС) ионопроводящих горных пород, активная и реактивная составляющие его; параметры УЭС горных пород. Взаимозависимость их от минерального и компонентного составов пород.	
3.	Основные понятия и уравнения электромагнитного поля.	Понятия прямых и обратных геофизических задач геофизики. Система уравнений Максвелла. Дифференциальные уравнения, описывающие постоянные (квазистационарные) и электромагнитные поле; выражение в них токов проводимости и смещения. Предельные и граничные условия, которым удовлетворяют характеристики электрических полей.	
4.	Теоретические основы метода кажущегося сопро-	Методы кажущегося электрического сопротивления. Физические основы измерения электрического (R) и удельного электрического сопротивления (УЭС). Схемы измерений, коэффи-	

ТИ	ВЛ	ен	И	8

Квазистационарное (постоянное) электрическое поле в однородной изотропной и анизотропной средах.

циенты измерительных устройств (ячеек, зондов). Комплексное, активное и реактивное сопротивления. Принцип взаимности элементов зондов КС.

Электрическое поле в одной изотропной среде. Решение задачи распределения потенциала и напряженности электрического поля в однородной изотропной среде интегрированием дифференциального уравнения Лапласа. Понятие истинного и кажущегося сопротивлений. Обоснование расчетов коэффициентов градиент- и потенциал-зондов. Принцип взаимности.

Электрическое поле в одной анизотропной среде. Парадокс анизотропии. Решение уравнения Лапласа для задачи распределения потенциала и напряженности точечного источника квазистационарного электрического поля в однородной анизотропной среде. Вывод уравнений для КС идеальных градиент и потенциал-зондов в анизотропной среде. Понятие коэффициента анизотропии, среднего геометрического сопротивления и обоснование парадокса анизотропии.

5. Квазистационарное (постоянное) электрическое поле в порознь однородных средах с плоскопараллельными границам раздела

Одна граница раздела. Решение задачи распределения потенциала и напряженности электрического поля методом зеркальных отображений (Томпсона). Обоснование расчетов кривых КС для идеальных потенциал- и градиент-зондов.

Две границы раздела. Решение задачи распределения потенциала и напряженности электрического поля методом зеркальных отображений (Томпсона). Обоснование расчетов кривых КС для идеальных потенциал- и градиент-зондов. Влияние угла пересечения скважины с поверхностью раздела.

Однородные среды с плоско-параллельными границам раздела. Общее решение задачи распределения потенциала и напряженности электрического поля интегрированием дифференциального уравнения Лапласа.

Частные решения задачи распределения потенциала и напряженности электрического поля: а) для одной границы раздела; б) для двух границ раздела. Влияние наклона и анизотропии на форму кривых кажущегося сопротивления.

6. Теоретические основы метода (БЭЗ-БКЗ). Квазистационарное электрическое поле в порознь однородных средах с коаксиально-цилиндрическими поверхностями раздела

Решение задачи распределения потенциала и напряженности электрического поля в порознь однородных средах с коаксиально-цилиндрическими поверхностями раздела методом интегрирования дифференциального уравнения Лапласа с помощью метода Фурье (разделения переменных). Анализ конечного выражения.

Теоретические кривые бокового электрического зондирования (БЭЗ-БКЗ). Палетки бокового электрического зондирования (БЭЗ-БКЗ) для потенциал- и градиент-хондирования, назначение палеток. Принцип U — эквивалентности кривых бокового электрического зондирования. Методы моделирования электрических полей квазипостоянного тока в неоднородных средах методом конечных разностей и с помощью электроинтегратора.

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
7.	Методы сопротивления электрического заземления СЭЗ)	Понятие сопротивления электрического заземления и способов его измерения в скважине. Основы теории метода бокового каротажа (БК) - сопротивления экранированного заземления,
		расчет кажущихся сопротивлений, измеряемых этими зондами,
		с использованием решений для обычных трехэлектродных
		зондов. Трехэлектродный экранированный зонд. Понятие гео-
		метрического фактора для приближенного расчета кривых БК.
8.	Микроэлектрические	Методы сопротивлений с прижимными электродными уста-
0.	методы КС (МКЗ,	новками. Основы методов микрозондов, микроэлектрического
	резистивиметрия) и	бокового зондирования и резистивиметрии. Микроэкраниро-
	МБК	ванные зонды с кольцевыми и плоскими электродами - метод
	WIDK	микробокового каротажа (МБК).
9.	Теоретические ос-	Понятия электромагнитных методов ГИС: индукционного ка-
.	новы электромаг-	1
	нитных методов ис-	(ИКЗ), высокочастотного электромагнитного каротажа
	следования сква-	(ВЭМКЗ, ВИКИЗ), диэлектрических методов (ДК).
	жин	Основы теории ИК (упрощенная теория Доля). Простран-
	MIII	ственный геометрический фактор: элементарного кольца; тон-
		костенного цилиндра и слоя (дифференциальных простран-
		ственных геометрических факторов), цилиндра и пласта (инте-
		гральных геометрических факторов), их анализ для двух кату-
		шечного зонда.
		Принципы фокусировки зондов ИК. Понятие скин-эффекта и
		скин-слоя. Обобщенное уравнение эффективной удельной
		электропроводности по данным ИК для модели пласта пересе-
		ченного скважиной.
		Основы теории электромагнитных методов исследования
		скважин. Метод высокочастотного индукционного изопара-
		метрического каротажного зондирования (ВИКИЗ). Принцип
		изопараметричености и его значение для реализации метода.
		Технологическая схема аппаратуры ВИКИЗ и её работы. Осо-
		бенности кривых ВИКИЗ.
		Диэлектрический индукционный каротаж (ДИК). Физические
		основы диэлектрических методов.
		Волновой диэлектрический каротаж (ВДК). Области примене-
		ния диэлектрических методов и решаемые ими задачи и огра-
		ничения применения.
10.	Теоретические и фи-	1
	зические основы ядер-	±
	ного магнитного ка-	
	ротажа ЯМК.	гиромагнитное отношение, времена спин-спиновой и спин-
	-	решеточной релаксации. Кривые спада сигнала свободной
		прецессии (ССП). Измерения временных составляющих ССП.
		Конструкции зондов ЯМК. Связь сигналов ЯМК с петрофизи-
		ческими характеристиками коллекторов, индекс свободного
		флюида (ИСФ). Кривые ЯМК их обработка и основы интер-
		претации. Геологическая информативность метода, характери-
		стика эффективной пористости. область применения.
	i.	

		Метод магнитного каротажа в сильном магнитном поле
		(ЯМКТ - томографического). Регистрация спинового эха мето-
		дом Карра-Парсела-Мейбиума-Гилля (СРМG). Регистрация
		спада сигнала спин-решеточной релаксации (Т2), их обработка
		и анализ. Геологическая информативность и основы интерпре-
		тации данных ЯМКТ.
11.	Методы потенциа-	Физические основы метода ПС, диффузионно-адсорбционная
	лов собственной по-	и фильтрационная составляющие ΔU пс. Изменение потенциа-
	ляризации скважин	лов собственной поляризации в скважине, пересекающей пла-
	(ПС) и вызванной	сты с различной электрохимической активностью при равен-
	поляризации (ВП).	стве удельных сопротивлений пластов и бурового раствора.
	. ,	Статическая амплитуда ПС в пластах различной толщины.
		Кривые ПС, их интерпретация, искажения ПС. Относительная
		амплитуда ПС - αпс. Область применения метода, решаемые
		задачи.
		Физические основы метода ВП в ионопроводящих породах, и в
		однородной изотропной среде и системе скважина-пласт.
		Физические основы потенциалов фильтрации в горных поро-
		дах и особенности их в скважинах.
12.	Акустический каро-	Физические и теоретические основы АК. Принципиальная
	таж (АК).	схема измерения, конструкция зонда. Лучевое представление
		распространения ультразвуковых колебаний (УЗК) по сква-
		жине. Интервальное время $(t_1, t_2, \Delta t)$, амплитуда первого вступ-
		ления и коэффициент затухания УЗК. Кривые АК (Δt , α), влия-
		ние диаметра скважины, интерпретация кривых. Эталонирова-
		ние приборов. Область применения, назначение и ограничения
		AK.
		Волновой акустический каротаж (ВАК). Особенности ВАК,
		назначение, область применения и ограничения. Понятие и со-
		отношение продольных, поперечных, изгибных и трубных
		(Лэмба-Стоунли) волн.

Междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами Таблица 3

№ п/п	Наименование обеспечиваемых (последующих) дисциплин		№ № разделов и тем данной дисциплины, необходимых для изучения обеспечиваемых (последующих) дисциплин										
	щих) дисциплин	1	2	3	4	5	6	7	8	9	10	11	12
1.	Интерпретация геофи- зических данных	+	+	+	4	+	+	+	+	+	+	+	+
2.	Комплексная интерпретация геофизических данных					+	+	+	+	+	+	+	+
3.	Интерпретация данных исследований сложных коллекторов						+	+	+	+	+	+	+
4.	Обоснование подсчетных параметров по данным геофизических ис-					+	+	+	+	+	+	+	+

	следований скважин											
5.	Аппаратура ГИС	+	+		+	+	+	+	+	+	+	+
6.	Геолого-	+	+	+								
	технологические иссле-											
	дования нефтегазовых											
	скважин											
7.	Специальные методы	+	+	+			+	+	+	+	+	
	ГИС											
8.	Современные техноло-	+	+	+	+	+	+	+	+	+	+	+
	гии в нефтегазовой гео-											
	физике											

Разделы (модули) и темы дисциплин и виды занятий

№ п/п	Наименование раздела дисципли- ны	Лекц., час.	Практ. зан. (лаб. раб.), час.	СРС, час.	Всего, час.	Из них в интерак- тивной форме обучения, час.
1	Цели и задачи дисциплины, связь её со смежными дисциплинами.	1/-/-	1/-/-	2	4	-
2	Основные электрические свойства и петрофизические параметры пород.	2/-/-	2/-/-	4	8	1
3	Основные понятия и уравнения электромагнитного поля.	1/-/-	1/-/-	4	6	1
4	Теоретические основы метода ка- жущегося сопротивления. Квази- стационарное электрическое поле в однородной изотропной и анизотропной средах.	3/-/-/	3/-/-	6	12	2
5	Квазистационарное электрическое поле в порознь однородных средах с плоско-параллельными границам раздела	5/-/-/	5/-/-/	11	21	1
6	Теоретические основы метода (БЭЗ-БКЗ). Квазистационарное электрическое поле в порознь однородных средах с коаксиальноцилиндрическими поверхностями раздела	5/-/-	5/-/-	11	21	2
7	Основы методов электрического заземления.	2,5/-/-	2,5/-/-	5	10	1
8	Микроэлектрические методы КС (МКЗ, резистивиметрия) и МБК	1/-/-	1/-/-	2	4	1
9	Теоретические и физические основы электромагнитных методов исследования скважин	5,5/-/-	5,5/-/-	12	23	2

10	Теоретические и физические основы	2/-/-	2/-/-	5	9	1
	ядерного магнитного каротажа ЯМК.					
11	Методы потенциалов собственной по-	2,5/-/-	2,5/-/-	5	10	1
	ляризации скважин (ПС) и вызванной					
	поляризации (ВП).					
12	Акустический каротаж (АК).	3,5/-/-	3,5	9	16	2
	Всего по курсу:	34	34	76	144	14

Перечень тем лекционных занятий

№ раз- дела	. •	Наименование лекции	Трудо- ем- кость (час.)	Форми- руемые компе- тенции	Методы препо- давания		
1	2	3	4	5	6		
1	1	Цели и задачи дисциплины, связь её со смежными дисциплинами.	1/-/-	лекция-диалог			
2	2	Основные электрические свойства и петрофизические параметры пород.	1 //-/-				
3	3	Понятия прямых и обратных геофизических задач геофизики. Система уравнений Максвелла. Предельные и граничные условия для характеристики электрических полей.	1/-/-		лекция- визуализация		
	4	Физические основы метода кажущегося электрического сопротивления.	0,5/-/-		лекция- визуализация		
4	5	Электрическое поле в однородной изотропной среде. Принцип взаимности.	1/-/-	ОК- 3,7,	лекция- визуализация		
	6	Электрическое поле в однородной анизотропной среде. Парадокс анизотропии.	1,5/-/-	ОПК- 4,56, ПК- 1,2,3,5,7,8,	лекция- визуализация		
	7	Электрическое поле в порознь однородных и изотропных средах, разделенных плоской поверхностью раздела, решение задачи методом зеркальных избражений (Томпсона).	2/-/-	9,15,22 ПСК- 2.2,2.3,2.4, 2.5,2.6	лекция- визуализация		
5	8	Электрическое поле в порознь однородных и изотропных средах, разделенных двумя плоскими поверхностями раздела, решение задачи методом зеркальных изображений (Томпсона).	1/-/-		лекция- визуализация		
	9	Электрическое поле в порознь однородных и изотропных средах, разделенных плоско-параллельными поверхностями раздела. Общее решение задачи интегрированием дифференциального уравнения Лапласа.	1/-/-		лекция- визуализация		

		11	1 / /		1
		Частные решения задачи распределе-	1/-/-		
	10	ния потенциала и напряженности			лекция-
	10	электрического поля для одной и			визуализация
		двух плоско-параллельных поверхно-			
		стей раздела	2/-/-		
		Основы метода (БЭЗ-БКЗ). Решение	2/-/-		
		задачи распределения потенциала и			
	11	напряженности электрического поля			лекция-
		в порознь однородных средах с коак-			визуализация
		сиально-цилиндрическими поверхно-			
		стями раздела			
		Анализ конечного выражения. Теоре-			
		тические кривые бокового электриче-			
6	10	ского зондирования (БЭЗ-БКЗ). Па-	2//		лекция-
	12	летки бокового электрического зон-	2/-/-		визуализация
		дирования (БЭЗ-БКЗ) U-			
		эквивалентность кривых бокового			
		электрического зондирования.			
		Методы моделирования электриче-			лекция-
	12	ских полей квазипостоянного тока в	1 / /		визуализация
	13	неоднородных средах методом ко-	1/-/-		
		нечных разностей и с помощью элек-			
		троинтегратора	2.5././		
		Физические основы методов сопро-	2,5/-/-		лекция-
		тивления электрического заземления.			визуализация
7	14	и способов его измерения в скважине.			
7		Основы теории метода бокового ка-			
		ротажа (БК). Понятие геометрическо-			
		го фактора для приближенного рас-			
		чета кривых БК.	1/-/-		
		Основы методов микрозондов, мик-	1/-/-		лекция-
		роэлектрического бокового зондиро-			визуализация
8	15	вания и резистивиметрии. Микро-			
		экранированные зонды с кольцевыми			
		и плоскими электродами - метод			
		микробокового каротажа (МБК).	2/-/-		пактия
1		Электромагнитнык методы исследования скважин. Основы теории	∠/-/-		лекция-
		ИК (упрощенная теория Доля). Про-			визуализация
		странственный геометрический фак-			
		тор: элементарного кольца; тонко-			
	16	тор: элементарного кольца, тонко- стенного цилиндра и слоя (диффе-			
9	10	ренциальных пространственных гео-			
フ		метрических факторов), цилиндра и			
		пласта (интегральных геометриче-			
		пласта (интегральных геометрических факторов), их анализ для двух			
		ских факторов), их анализ для двух катушечного зонда.			
		-	1/-/-	OV 27	пакине
	17	Принципы фокусировки зондов ИК.	1/-/-	ОК- 3,7, ОПК-	лекция-
		Понятие скин-эффекта и скин-слоя.		OHK-	визуализация

		Обобщенное уравнение эффективной		4,56, ПК-	
		удельной электропроводности по		1,2,3,5,7,8,	
		данным ИК для модели пласта пере-		9,15,22	
		сеченного скважиной.		ПСК-	
		Основы теории метода высокоча-	1,5/-/-	2.2,2.3,2.4,	лекция-
	18	стотного индукционного изопарамет-		2.5,2.6	визуализация
	10	рического каротажного зондирования			
		(ВИКИЗ).			
		Физические основы диэлектрических	1,0/-/-		лекция-
	19	методов; диэлектрический индукци-			визуализация
	17	онный каротаж (ДИК), волновой ди-			
		электрический каротаж (ВДК).			
10	20	Физические и теоретические основы	2/-/-		лекция-
		метода и зонда ЯМР.	2//		визуализация
		Теоретические основы метода ПС,	2/-/-		
		решение задачи распределения по-		ОК- 3,7,	
		тенциалов собственной поляризации в скважине, пересекающей пласты с		ОПК-	номина
	20	различной электрохимической актив-		4,56, ПК-	лекция- визуализация
		ностью при равенстве удельных со-		1,2,3,5,7,8,	визуализация
		противлений пластов и бурового рас-		9,15,22	
11		твора.		ПСК-	
11		Физические основы метода ВП в	0,5/-/-	2.2,2.3,2.4,	
			- 9	2526	
		ионопроводящих породах, и в одно-		2.5,2.6	
		ионопроводящих породах, и в однородной изотропной среде и системе		2.5,2.6	
	21	ионопроводящих породах, и в однородной изотропной среде и системе скважина-пласт.		2.5,2.6	лекция-
	21	родной изотропной среде и системе		2.5,2.6	лекция- визуализация
	21	родной изотропной среде и системе скважина-пласт.		2.5,2.6	•
	21	родной изотропной среде и системе скважина-пласт. Физические основы потенциалов		2.5,2.6	•
12	21	родной изотропной среде и системе скважина-пласт. Физические основы потенциалов фильтрации в горных породах и осо-	1,5/-/-	2.5,2.6	•
12		родной изотропной среде и системе скважина-пласт. Физические основы потенциалов фильтрации в горных породах и особенности их в скважинах.	1,5/-/- 2/-/-	2.5,2.6	визуализация

Перечень лабораторных работ

№ п/п	№ темы	Темы семинаров, практических и лабораторных работ	Трудо- емкость (час.)	Форми- руемые ком- петенции	Методы преподава- ния
1	2	3	4	6	7
1	1,2	Назначение геофизических методов исследований скважин (ГИС), основные направления ГИС. Зарождение и развитие методов ГИС	1//	ОК- 3,7, ОПК- 4,56, ПК-	Семинар
2	3	Знакомство с диаграммами ГИС. Составление таблицы выполненного комплекса ГИС по скважине		1,2,3,5,7,8,9 ,15,22 ΠCK- 2.2,2.3,2.4,2	Семинар
3	4	Характеристики электрических свойств (ρ_{Π} , ϵ , Ада и др) ионопроводящих горных пород		.5,2.6	Семинар

		Расчет кривых КС в средах с одной			Лабораторная
5	7	плоской поверхностью раздела ме-	3/-/-		работа № 1
3	,	тодом зеркальных изображений.	3/ /		pa001a 31_ 1
		Расчет и построение кривых КС для	4/-/-		Лабораторная
6, 7	8-10	мощного пласта высокого сопротив-	-1 / -/ -		работа № 2
0, 7	0-10	ления графическим методом.			pa001a № 2
			1	OV 2.7	Поборожницая
		Расчет значений изорезист методов	1	OK- 3,7,	Лабораторная
		БК и ИК		ОПК- 4,56,	работа № 3
0	11 10			ПК-	
8	11 12			1,2,3,5,7,8,9	
				,15,22 ПСК-	
				2.2,2.3,2.4,2	
				.5,2.6	
9	11-13	Моделирование задач КС с помо-	2	ОК- 3,7,	Лабораторная
	11 15	щью программы БКЗ-2D		ОПК- 4,56,	работа № 4
		Расчет кривых р _{эф} 7-электродного	4/-/-	ПК- 4, 30,	Лабораторная
10	14	зонда БК для одной плоскопарал-		1,2,3,5,7,8,9	работа № 5
		лельной границы раздела.		,15,22 ПСК-	
		Расчет пространственного геомет-	4/-/-	2.2,2.3,2.4,2	Лабораторная
11	16, 17	рического фактора для 2-ух кату-		.5,2.6	работа № 6
		шечного индукционного зонда.		.5,2.0	
		Основы разложения кривой спада	1	ОК- 3,7,	Лабораторная
		спин-решеточной релаксации ЯМР		ОПК- 4,56,	работа № 7
		на составляющие (бины)		ПК-	1
12	19			1,2,3,5,7,8,9	
				,15,22 ПСК-	
				2.2,2.3,2.4,2	
				.5,2.6	
		Расчет ЭДС (Еда,п, Еда,гл, Es) для		,	Лабораторная
		различных значений Кда, Ксп, рф и			работа 8
13	20	$\rho_{\rm B}$. Определение относительной ам-	3/-/-	ОК- 3,7,	pucciuc
13	20	плитуды α_{nc} . Интерпретация кривых	3/ /	ОПК- 4,56,	
		метода ПС.		ПК-	
		Расчет амплитуды потенциалов соб-		1,2,3,5,7,8,9	
		ственной поляризации ΔU_{cn} от тол-		,15,22 ПСК-	
14	21	щины пласта при разных ЭДС на по-	4/-/-	2.2,2.3,2.4,2	Лабораторная
14	21		4/-/-	.5,2.6	работа 9
		верхностях раздела сред и построе-			
		ние кривых ΔU_{cn}	3/-/-	OV 2.7	Поборожатися
		Расчет и построение кривой интер-	3/-/-	OK- 3,7,	Лабораторная
		вального времени (АК).		ОПК- 4,56,	работа № 10
1.5	22			ПК-	
15	22			1,2,3,5,7,8,9	
				,15,22 ПСК-	
				2.2,2.3,2.4,2	
				5 1 6	
D	о часов		34	.5,2.6	

Лабораторные работы

(выполняются на основании разработанных методических указаний, см. карту обеспеченности дисциплины учебной и учебно-методической литературой)

No No	<mark>Вид</mark>	Наименование
1	Лабораторная работа 1.	Расчет кривых КС в средах с одной плоской поверхностью разде
		ла методом зеркальных изображений.
<mark>2</mark>	Лабораторная работа 2	Расчет и построение кривых КС для мощного пласта высокого
		сопротивления графическим методом.
<mark>3</mark>	Лабораторная работа 3.	Расчет значений изорезист методов БК и ИК
<mark>4</mark>	Лабораторная работа 4.	Моделирование задач КС с помощью программы БКЗ-2D
<mark>5</mark>	Лабораторная работа 5.	Расчет кривых $\rho_{9\phi}$ 7-ми электродного зонда БК для одной пло-
		скопараллельной границы раздела.
<mark>6</mark>	<mark>Лабораторная работа 6.</mark>	Расчет пространственного геометрического фактора для 2-ух
		катушечного индукционного зонда.
<mark>7</mark>	<mark>Лабораторная работа 7.</mark>	Основы разложения кривой спада спин-решеточной релаксации
		ЯМР на составляющие (бины)
8	Лабораторная работа 8	Расчет ЭДС (Еда, п, Еда, гл, Еѕ) для различных значений Кда, Ксп
		$ ho_{\phi}$ и $ ho_{B}$. Определение относительной амплитуды $lpha_{nc}$. Интерпрета
		ция кривых метода ПС.
<mark>9</mark>	Лабораторная работа 9.	Расчет амплитуды потенциалов собственной поляризации ΔU_{cn} о
		толщины пласта при разных ЭДС на поверхностях раздела сред в
		построение кривых ΔU_{cn}
<mark>10</mark>	Лабораторная работа 10.	Расчет и построение кривой интервального времени (АК).

Перечень тем для самостоятельной работы

№ п/п	№ раздела (модуля) и темы	Наименование темы	Трудо- емкость (час.)	Виды кон- троля	Формируемые компетенции
1	1-31	Подготовка к аттестациям	32	Аттестации	
2	1-31	Подготовка к лабораторным работам	32,8	Проверка и защита ла- бораторных работ	ОК- 3,7, ОПК- 4,56, ПК- 1,2,3,5,7,8,9,15,
4	1-31	Индивидуальные консультации студентов в течение семестра	2,8	-	22 ПСК- 2.2,2.3,2.4,2.5,2 .6
5	1-31	Консультации в группе перед экзаменом	4,4	-	
Всего	о часов:		72		

Студенты в рамках теории электромагнитных и акустических методов выполняют курсовую работу, целью которой является закрепление теоретических знаний и приобретение навыков расчета электрических и электромагнитных полей в скважинах с различными геохимическими условиями. Предлагаются следующие темы курсовых работ. Срок представления их на проверку: конец 15-ой учебной недели; защита публичная.

- 1. Экспериментальное моделирование распределения электрического потенциала с помощью двумерных моделей сред с разным УЭС для случаев: 1) однородной изотропной среды; 2) однородных сред с плоской границей раздела; 3) модели пласта.
- 2. Экспериментальное моделирование распределения электрического потенциала с помощью двумерных моделей сред с разным УЭС для скважины при наличии сред: 1) однородной изотропной среды; 2) однородных сред с плоской границей раздела; 3) модели пласта.
- 3. Характеристика электрических свойств (удельного электрического сопротивления, электрохимической активности, диэлектрической и магнитной проницаемости, поляризуемости) горных пород, взаимосвязи свойств.
- 4. Понятия кажущегося и эффективного удельных электрических сопротивлений разреза скважин, физические основы их регистрации, влияние скважинных условий и измерительной установки на ρ_{κ} и $\rho_{\text{эф}}$.
- 5. Основные уравнения электромагнитного поля; волновое число k и физический смысл его, в.т.ч. включая физические смыслы: коэффициента поглощения «b» и фазового множителя «a», токов проводимости и смещения.
- 6. Характеристика возможности моделирования методов кажущегося удельного электрического сопротивления с помощью электролитической модели разреза скважины, разработанной на кафедре ПГ ТюмГНГУ.
- 7. Характеристика возможности моделирования методов кажущегося удельного электрического сопротивления с помощью электролитической модели разреза скважины, разработанной на кафедре ПГ ТюмГНГУ.
- 8. Выполнить расчет теоретических кривых кажущегося сопротивления ($\rho_{\rm k}$) для записи последовательным идеальным градиент зондом в случае горизонтальных пластов при L=1, h/L>10 и $\rho_{\rm n}/\rho_{\rm вм}$ равном 3, 15 и 40 (при отсутствии скважины).
- 9. Выполнить расчет теоретических кривых кажущегося сопротивления (ρ_{κ}) для записи обращенным идеальным градиент зондом в случае горизонтальных пластов при L=1, h/L>10 и $\rho_{\text{п}}/\rho_{\text{вм}}$ равном 4, 18 и 30 (при отсутствии скважины).
- 10. Выполнить расчет теоретических кривых кажущегося сопротивления ($\rho_{\rm k}$) для записи обращенным идеальным потенциал зондом в случае горизонтальных пластов при L=1, h/L>10 и $\rho_{\rm n}/\rho_{\rm BM}$ равном 3, 15 и 30 (при отсутствии скважины).
- 11. Выполнить расчет теоретических кривых кажущегося сопротивления (ρ_{κ}) для записи обращенным идеальным потенциал зондом при L=1, h/L>10 и ρ_{Π}/ρ_{BM} равном 50. в случае наклонных пластов и при углах встречи скважины и пласта β = 90, 60 и 30 градусов, (при отсутствии скважины).
- 12. Выполнить расчет теоретических кривых кажущегося сопротивления ($\rho_{\rm K}$) для записи последовательным потенциал зондом при L=1, h/L>10 и $\rho_{\rm П}/\rho_{\rm BM}$ равном 50. в случае наклонных пластов и при углах встречи скважины и пласта β = 90, 60 и 30 градусов, (при отсутствии скважины)..
- 13. Обосновать распределение электрического потенциала на оси фиктивной скважины (Z), пересекающей три порознь однородные изотропные среды с УЭС: 1) ρ_1 = 5, ρ_2 =50 и ρ_3 = 10 Омм, 2) ρ_1 =2, ρ_2 =25 и ρ_3 =5 Омм, при толщине второй среды 8 м. Привести графики U=f(z)

- 14. Выполнить расчет теоретических кривых кажущегося сопротивления (ρ_{κ}) для записи последовательным идеальным градиент зондом в проводящей скважине, пересекающей непроводящий пласт при следующих условиях: ρ_{c} =1 Омм, h/L= 5 и 10 м, при L=1м.
- 15. Теоретические основы метода БКЗ, расчетов и построения палеток БКЗ.
- 16. Выполнить расчет теоретических кривых кажущегося сопротивления ($\rho_{\rm K}$) для записи последовательным идеальным потенциал зондом в проводящей скважине, пересекающей непроводящий пласт при следующих условиях: $\rho_{\rm c}$ =1 Омм, h/L= 5 и 10 м, при L=1м. (281-282)
- 17. Теоретические основы построения изорезистивных (по отношению к значениям ρ_{κ}/ρ_{c} градиент зондов) кривых методов эффективного и кажущегося сопротивления. Рассчитать и нанести изорезисту потенциал зондов на палетку с шифром D/d=4; $\rho_{3\Pi}/\rho_{c}=10$.
- 18. Теоретические основы построения изорезистивных (по отношению к значениям ρ_{κ}/ρ_{c} градиент зондов) кривых методов эффективного и кажущегося сопротивления. Рассчитать и нанести изорезисту зонда ИМ на палетку с шифром D/d=8; $\rho_{3\Pi}/\rho_{c}=10$).
- 19. Теоретические основы построения изорезистивных (по отношению к значениям ρ_{κ}/ρ_{c} градиент зондов) кривых методов эффективного и кажущегося сопротивления. Рассчитать и нанести изорезисту зонда БК на палетку с шифром D/d=8; $\rho_{sn}/\rho_{c}=10$).
- 20. Физические и теоретические основы метода БК; расчет кривых эффективного сопротивления для пласта с зоной повышающего проникновения (условия расчетов выбираются студентом).
- 21. Приближенная теория индукционного каротажа по Г. Долю. Геометрические факторы тонкого проводящего цилиндрического слоя и цилиндра, тонкого плоского проводящего слоя и пласта; методики их расчета. (Дифференциальные и интегральные геометрические факторы: вертикальные и радиальные.)
- 22. Основы теории многокатушечных зондов ИК; принципы расчетов их характеристик. Сравнение прямых радиальных и вертикальных характеристик зонда $6\Phi1$ (по М.И. Плюснину) и двухкатушечного зонда (по Γ . Γ . Долю).
- 23. Появление и развитие метода микрозондирования (физические и теоретические предпосылки), характеристика типов зондов и технологии исследований.
- 24. и их предельные значения в геофизических условиях нефтегазоносных месторождений Западной Сибири.
- 25. Теоретические основы расчета потенциалов собственной поляризации на оси вертикальной скважины; расчет кривых ПС для пластов различной толщины (h/dc=5, 10, 20) при $\rho_{\rm d}/\rho_{\rm B}$ =20 и Ада.пласта=0, Ада.вм.=70 мВ.
- 26. Теоретические основы расчета потенциалов собственной поляризации на оси вертикальной скважины при влиянии фильтрационных потенциалов; расчет кривых ПС для пласта толщиной h/dc=20, при $A\varphi$ =-20 мB, ρ_{Φ}/ρ_{B} =20 и Aда.пласта=0, Aда.вм.=70 мB.
- 27. Теоретические основы расчета потенциалов вызванной поляризации и кривых метода ВП (параметры расчета выбираются студентом).
- 28. Теоретические и физические основы методов электрического сканирования стенок скважин (от наклонометрии до электрических сканеров типа FMI и секционированного БК)
- 29. Теоретические и физические основы метода ядерного магнитного каротажа (ЯМК). Методы свободной прецессии и спинового эха.
- 30. Теоретические и физические основы томографического метода (ЯМТК) ядерного магнитного каротажа (в сильно магнитном поле)
- 31. Теоретические и физические основы акустических методов (АК. ВАК, кроссдипольного).

32. Обзор применения метода конечных разностей для решения задач электрометрии.

Срок представления курсовых работ на проверку: конец 17-ой учебной недели; защита публичная.

Оценка результатов освоения учебной дисциплины Распределение баллов по дисциплине

Таблица 9

	Te	екущий контро	Промежуточная аттестация	
				обучающихся (экзаменаци-
				онная сессия)
-0	1-я текущая	2-я текущая	3-я текущая	Не проводится для обучаю-
9 С	аттестация	аттестация	аттестация	щихся, набравших более 61
техноло	0-20 баллов	0-25 баллов	0-25 баллов,	балла по результатам теку-
			плюс 30 бал-	щего контроля
38			лов за вы-	
НН			полнение ла-	
HI			бораторных	
Очная форма обучения и зас применением дистанционных гий			работ	
— ста гі		100 баллов		проводится
дио Дио				0-100 баллов
M M				(для обучающихся, набрав-
фо				ших менее 61 балла по ре-
нет				зультатам текущего контроля,
чн; ме				при этом баллы, набранные в
О О П				течение учебного семестра
<u> </u>				аннулируются)
Заочная форма		-		проводится
обучения				0-100 баллов

Рейтинговая система оценки

по дисциплине «<mark>Геофизические исследования скважин</mark>» для студентов 3 курса направления 21.05.03 «Технология геологической разведки» на <mark>5</mark> семестр

Максимальное количество баллов за каждую текущую аттестацию

Таблица 10

1 срок предоставления результа-	2 срок предостав-	3 срок предоставле-	Итого
тов текущего контроля	ления результатов	ния результатов те-	
	текущего кон-	кущего контроля	
	троля		
0-22	0-23	0-55*	0-100

^{* -} включая оценку (30 баллов) выполнения лабораторных работ

№	Виды контрольных мероприятий	Баллы	№ недели
1	Текущая аттестация	0-22	1-6
И	ГОГО за первую текущую аттестацию	0-22	1-6
2	Текущая аттестация		7-12
И	ИТОГО за вторую текущую аттестацию		7-12
3	Текущая аттестация	0-25	13-18

4	Защита лабораторных работ	0-30	1-18
	ИТОГО за третью текущую аттестацию	55	1-18
	ВСЕГО	100	
5	Курсовая работа	100	17

Базы данных, информационно-справочные и поисковые системы

- 1. Полнотекстовая база данных eLibrary.ru [Электронный ресурс]. Режим доступа: http://www.tsogu.ru/lib
- 2. Система поддержки дистанционного обучения [Электронный ресурс]. Режим доступа: http://educon.tsogu.ru:8081/login/index.php
- 3. Internet, стандартные, реализуемые в MSOffice.

Материально-техническое обеспечение дисциплины

Перечень оборудования, необходимого для успешного освоения образовательной программы								
Наименование	Количество	Значение						
Персональный компьютер	25	Проведение лабораторных занятий, использование ПК при выполнении заданий						
Средства мультимедиа (проектор, экран, ноутбук)	1	Проведение лекционных занятий, сообщения с применением презентаций, защита индивидуальных работ						

Карта обеспеченности дисциплины учебной и учебно-методической литературой

Учебная дисциплина Электромагнитные и акустические методы исследования скважив Кафедра Прикладная геофизика

Форма обучения:

очная:

3 курс

6 семестр

Код, направление подготовки/специальность 21.05.03 Технология геологической разведки

Учебная, учебно- метолическая литература по рабочей программе	изаательство, год	Год изда иня	Ви д изд ани я	Вид заиятий	Кол-во	Контингент обучающихс я, использующ их ухазанную литературу	Обеспечен ность обучающих ся литературо й, %		Наличие эл. варианта в электрони о- библиотеч ной системе
1	2	1	4	5					ТИУ
	Стрельченко, Валентин Вадимович. Геофизические исследования скважин [Текст]: учебное пособие для студентов вузов, обучающихся по специальности 130202 "Геофизические методы исследования скважин" направления подготовки дипломированных специалистов 130200 "Технологии геологической разведки" / В. В. Стрельченко: РГУ нефти и газа им. И. М. Губкина М.: Недра, 2008 551 с. http://elib.gabkin.ru/content/13497	2008		Л, ПР	6 2+9P*	25	100	БИК	+
	Савиных, Юрий Александрович, Использование технологического звука для управления параметрами режима бурения и повышения производительности добывающих скважин [Текст : Электронный ресурс] / Ю. А. Савиных, Х. Н. Музипов, П. В. Овчинников, - Тюмень : Вектор Бук, 2008, - 164 с Режим доступа:http://elib.tyuiu.ru/wp- content/uploads/umk2/158133/158133.doc	2008		Л.Лаб.С	10+,3b*	25	100	БИК	дап
1	Савиных, Юрий Александрович. Повышение эффективности турбинного бурения на основе кустической информации [Текст] : научное издание / Ю. А. Савиных, Г. А. Хмара ; ТюмГНГУ Тюмень : ТюмГНГУ, 2013.	2008		AJIa6.C	14+3P*	25	100	БИК	ПБД

Дворецкий, Петр Иванович. Электромагнитные и гнародинамические методы при освоении нефтегазовых месторождений [Текст] = Electromagnetic and hydrodynamic techniques to the probing and performance of oll/gas reservoirs / П. И. Дворецкий, И. Г. Ярмахов М.: Недра, 1998 319 с.: граф., рис Библиогр.: с. 311 (120 назв.).			Л.Наб.С	10	25	100	БИК	
Золоева, Галина Михайловна, Интерпретация результатов геофизических исследований скважин [Текст] = Interpretation of well logging results: учебное пособие для студентов вузов, обучающихся по специальности 130503 "Разработка и эксплуатация нефтяных и газовых месторождений направления подготовки дипломированных специалистов 130500 "Нефтегатовое дело" Г. М. Золоева, Л. П. Петров, М. С. Хохлова М.: МАКС Пресс, 2009 178 с			Л.Лыб,C	10	25	100	БИК	H
Интерпретация результатов геофизических исследований иефтяных и газовых скважин [Текст] : справочник / под ред. В. М. Добрынина М.: Недра. 1988 480 с.: граф табл Библюгр.: с. 463 (118 назв.) Предм. указ.: с. 470.	1988		Л.Лаб.С	49	25	100	БИК	34
Дахнов, Владимир Николаевич. Электрические и магнитные методы исследования скважин (основы теории) [Текст]: учебник для студентов вузов, обучающихся по специальности "Геофизические методы поисков и разведки месторождений полезных ископаемых" / В. Н. Дахиов Москва: Недра. 1967 390 с Библиогр.: с. 384.	1967	У	Л.Либ.	24	25	100	БИК	3
Итенберг, Семен Самуилович. Интерпретация результатов геофизических исследований разрезов скважин [Текст]: учебное пособне для студентов вузов / С. С. Итенберг М.: Нелра, 1972 312 с.: табл., рис.; 25 см Библиогр.: с. 308-309 (34 назв.).	1972	УП	Л,Лаб.	21	25	100	PAK	* .
Резилиов, Рашит Ахмаевич. Радноактивные и другие неэлектрические методы исследования скважин [Текст] : учебник для студентов вузов, обучающихся по специальности "Геофизические методы поисков и разведки месторождений подезных ископаемых" / Р. А. Резванов М. : Недра, 1982 368 с.	1982	У	Л.Лаб.	60	25	F WAY	SHK	2

Зан кафеарой 2018г

С. К. Туренко

Директор БИК И Д. Х. Канокова Соштосовсино АСу И 21. Синиминучу